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SUMMARY
The rise and fall of estrogen and progesterone across menstrual cycles and during pregnancy regulates
breast development and modifies cancer risk. How these hormones impact each cell type in the breast re-
mains poorly understood because they act indirectly through paracrine networks. Using single-cell analysis
of premenopausal breast tissue, we reveal a network of coordinated transcriptional programs representing
the tissue-level response to changing hormone levels. Our computational approach, DECIPHER-seq, lever-
ages person-to-person variability in breast composition and cell state to uncover programs that co-vary
across individuals. We use differences in cell-type proportions to infer a subset of programs that arise
from direct cell-cell interactions regulated by hormones. Further, we demonstrate that prior pregnancy
and obesity modify hormone responsiveness through distinct mechanisms: obesity reduces the proportion
of hormone-responsive cells, whereas pregnancy dampens the direct response of these cells to hormones.
Together, these results provide a comprehensive map of the cycling human breast.
INTRODUCTION

Coordinated interactions between cells are essential for the

development and maintenance of normal tissue function, and

dysregulation of cell-cell interactions is a key driver of disease.

In the human breast, fluctuations in the levels of estrogen and

progesterone with each menstrual cycle and during pregnancy

control cell growth, survival, differentiation, and tissue

morphology. The impact of these changes is profound: cumula-

tive lifetime exposure to cycling hormones is a major modifier of

breast cancer risk (Collaborative Group on Hormonal Factors in

Breast Cancer, 2012), and the majority of breast tumors are

estrogen dependent. However, many of the effects of ovarian

hormones within the breast are indirect. The estrogen and pro-

gesterone receptors (ER/PR) are expressed in only 10%–15%

of cells within the epithelium (Clarke et al., 1997). Thus, most of
Cell Systems 13, 1–21,
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the changes that occur in response to hormone receptor activa-

tion are mediated by a complex cascade of paracrine signaling

from hormone-responsive (HR+) cells to other cell types in the

breast. Accordingly, cell-cell interactions between HR+ cells

and other cell types are key to normal breast morphogenesis.

However, due to a number of challenges inherent to hormone

signaling and human breast biology, we lack a systems-level un-

derstanding of how different cell populations respond to cycling

hormone levels.

A first challenge for understanding the tissue-level response to

estrogen and progesterone is that there are major differences in

glandular architecture and stromal composition and complexity

between humans and model organisms like the mouse (Dontu

and Ince, 2015; Parmar and Cunha, 2004). For example, while

ER expression is restricted to the epithelium in humans, it is

also expressed in the stroma in rodents (Mueller et al., 2002;
August 17, 2022 ª 2022 The Authors. Published by Elsevier Inc. 1
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Palmieri et al., 2004). Therefore, understanding the conse-

quences of cellular crosstalk downstream of estrogen and

progesterone requires studying these processes in humans or

human models.

A second challenge is that the human breast is both heteroge-

neous across individuals and characterized by a highly dynamic

microenvironment. There is a high degree of variability between

individuals in terms of epithelial architecture (Russo et al., 1992),

cell composition (Nakshatri et al., 2015; Rosenbluth et al., 2020),

and hormone responsiveness (Dunphy et al., 2020; Muenst et al.,

2017; Tanos et al., 2013), and these differences likely impact

both normal breast function and breast cancer susceptibility.

Within individuals, the menstrual cycle and pregnancy/lacta-

tion/involution cycle are major drivers of epithelial remodeling,

characterized by alternating periods of epithelial expansion

and regression in response to changing hormone levels (Ander-

son et al., 1982; Jindal et al., 2014; Söderqvist et al., 1997; Russo

et al., 1992). Histological analyses of paraffin-embedded human

tissue sections have also identified cyclical alterations in epithe-

lial architecture and stromal organization across the menstrual

cycle (Ramakrishnan et al., 2002; Vogel et al., 1981) and broad

remodeling following weaning (Lyons et al., 2011; O’Brien

et al., 2010). However, little is known about how this underlying

heterogeneity impacts cell state and the intercellular signaling

networks that control tissue morphogenesis. As it enables unbi-

ased analysis of cell types within the human mammary gland at

single-cell resolution, single-cell RNA sequencing (scRNA-seq)

is particularly well suited to investigate this problem.

Here, we use scRNA-seq in a cohort of twenty-eight premen-

opausal reduction mammoplasty tissue specimens (RM cohort)

to trace the transcriptional changes that occur in the human

breast downstream of hormone signaling. To provide insight

into the cellular interactions that regulate breast tissue homeo-

stasis, we develop DECIPHER-seq: Deconstructing Cell-cell In-

teractions using Phenotypic Heterogeneity in scRNA-seq data, a

systematic computational approach that leverages the high de-

gree of inter-sample transcriptional heterogeneity in the breast to

identify coordinated interaction networks across cell types. Our

approach was guided by two hypotheses. First, we predicted

that if two cell types are acting together—via either direct cell-

to-cell signaling or a response to shared microenvironmental/

paracrine cues—the transcriptional signatures representing

those cell-cell interactions should be correlated across samples.

More specifically, since the effects of estrogen and progesterone

on other cell types in the breast are controlled by paracrine

signaling from HR+ luminal cells, we reasoned that hormone re-

ceptor activation in HR+ luminal cells would be correlated with

transcriptional changes in other cell types, representing the

downstream paracrine response. Second, we predicted that

we could infer the types of cell-cell interactions that make up

each pairwise correlation by incorporating information about

(1) the proportion of each cell type across samples, (2) the simi-

larity of each transcriptional signature, and (3) enrichment of

common biological pathways across signatures. Thus, we

sought to use the inter-sample transcriptional variability and dif-

ferences in cell-type proportions present in the dataset as a type

of ‘‘natural experiment’’ to understand how the behaviors of

different cell types in the breast are coordinated at the tis-

sue level.
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Based on this approach, we identify a network of coordinated

activity programs in HR+ cells and other cell types that represent

the dynamic tissue-level response of the human breast to chang-

ing hormone levels. Using differences in cell-type proportions

across samples, we infer a subset of activity programs that

depend on direct cell-to-cell signaling and find that these direct

interactions primarily comprise signaling from HR+ cells to other

cell types. Using these data, we generate hypotheses about how

person-to-person variation at the tissue level is linked to specific

biological mechanisms at the cellular level, and directly test

these hypotheses using flow cytometry and immunostaining in

an expanded cohort of samples. We find that paracrine signaling

from HR+ cells to neighboring cell types depends on both the

magnitude of the ER/PR transcriptional response and the overall

abundance of HR+ cells in the tissue. Accordingly, we demon-

strate that prior pregnancy and obesity both lead to decreased

hormone responsiveness in the breast, but act through distinct

mechanisms: pregnancy influences the magnitude of the ER/

PR signaling response in HR+ luminal cells, whereas obesity re-

duces the proportion of HR+ cells and therefore downstream

paracrine signaling. These changes are consistent with the pro-

tective effect of prior pregnancy and high body mass index (BMI)

against premenopausal breast cancer. Overall, these results

provide a comprehensive map of the cycling human breast and

the dynamic cell-cell interactions that underlie normal breast

function and breast cancer risk. More broadly, we describe a

systematic approach to unravel the functional significance of

person-to-personal variability in the human breast at the tissue

level, by linking individual cell types’ transcriptional signatures

to higher-order modules of cell-cell interactions.

RESULTS

Person-to-person variability in transcriptional cell state
in the premenopausal human breast
To identify inter-individual differences in transcriptional cell state

in the human breast, we performed scRNA-seq on 86,136 cells

collected from 28 healthy premenopausal donors who under-

went reduction mammoplasty (Figures 1A and S1A; Table S1).

To obtain an unbiased snapshot of the epithelium and stroma,

we collected live (DAPI-negative) singlet cells from all samples

by fluorescence-activated cell sorting (FACS) (Figures S1A and

S1B; Table S2). For a subset of samples, we also collected puri-

fied epithelial cells or purified luminal and basal/myoepithelial

cells (Figures S1A and S1B; Table S2). We used MULTI-seq

lipid-based barcoding and in silico genotyping for sample

multiplexing to minimize technical variability between samples

(Figure S1C; Table S2; STAR Methods; Heaton et al., 2020;

McGinnis et al., 2019b).

Sorted basal and luminal cell populations were well resolved

by Uniform Manifold Approximation and Projection (UMAP) (Fig-

ure S1D). Unsupervised clustering identified one basal/myoepi-

thelial cluster, two luminal clusters, and six stromal clusters

(Figure 1B). Based on the expression of known markers, the

two luminal clusters were annotated as HR+ and secretory

luminal cells, and the six stromal clusters were annotated as fi-

broblasts, vascular endothelial cells, lymphatic endothelial cells

(‘‘lymphatic’’), smooth muscle cells/pericytes (‘‘vascular acces-

sory’’), lymphocytes, and macrophages (Figures 1B, S1E, and
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S1F). The luminal populations described here closely match

those identified as ‘‘HR+/mature luminal’’ and ‘‘secretory/luminal

progenitor’’ in previous flow cytometry and scRNA-seq analyses

of the human breast (Lim et al., 2010; Bhat-Nakshatri et al., 2021;

Nguyen et al., 2018). Here, we use the nomenclature ‘‘hormone-

responsive/HR+’’ and ‘‘secretory’’ to refer to these two luminal

cell types. The HR+ cluster was enriched for the hormone recep-

tors ESR1 and PGR (Figure S1G), and other knownmarkers such

as ANKRD30A (Figures S1E and S1F; Nguyen et al., 2018).

Consistent with previous studies demonstrating variable hor-

mone receptor expression across themenstrual cycle (Battersby

et al., 1992), expression of ESR1 and PGR transcripts were spo-

radic and often non-overlapping. Within the HR+ luminal cluster,

22% of the cells had detectable levels of ESR1 or PGR, with only

2% of HR+ cells expressing both transcripts (Figure S1H).

Beyond identifying the major cell types, single-cell analysis

resolved a high degree of person-to-person transcriptional vari-

ability in the human breast. Following batch-correction (Fig-

ure S2A) (Butler et al., 2018), cells from different individuals

were represented across all cell-type clusters (cluster entropy =

0.93, STARMethods) (Figure S1B). However, despite this mixing

across cell types, individuals displayed distinct transcriptional

signatures within individual cell-type clusters (Figures 1C and

S1C). Because we used MULTI-seq to multiplex samples, we

were able to confirm that this variation in cell state was not due

to technical variation, as we directly compared cells from

different samples that were run in the same batch to cells from

matched samples that were run across multiple batches. Cells

from the same sample were more similar to each other than cells

from different samples, regardless of the batch/day of process-

ing (Figures S2D and S2E; Table S2; STAR Methods).

Inferring shared transcriptional responses and direct
cell-to-cell signaling interactions in the human breast
Since estrogen and progesterone aremaster regulators of breast

development, and the levels of these hormones fluctuate across

the menstrual cycle, we predicted that ER/PR signaling and the

downstream paracrine response would be a major source of

transcriptional heterogeneity across samples in our dataset.

Based on random sampling across the menstrual cycle and dif-

ferences in hormonal contraceptive use, we would expect to
Figure 1. Sample-to-sample variability in transcriptional cell state in th

(A) Single-cell transcriptional analysis links biological variables with person-to-per

mammoplasty samples were processed to epithelial-enriched tissue fragments, t

tion using the 10X Chromium system, and sequencing.

(B) The major epithelial and stromal cell types in the breast were identified and

twenty-eight samples reduction mammoplasty samples (GEO: GSE198732, Tab

(C) Density plots (arbitrary units, linear scale) highlighting the transcriptional cell

from each sample.

(D) Overview of conceptual approach: we hypothesized that hormone receptor

dataset and that hormone receptor activation in hormone-responsive (HR+) lum

representing the downstream paracrine response. Based on the differences in hor

use, we predicted that gene expression programs representing ER/PR signaling i

would co-vary across samples (right).

(E) Using individual pairwise correlations between cell activities, DECIPHER-seq b

breast and identifies modules of transcriptional states that co-occur across the s

non-cell-type-specific responses to shared signals and uncover modules enriche

using gene set enrichment analysis, identify common pathways enriched acros

variation by testing association with annotated metadata features.
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identify samples with varying levels of ER/PR activation in HR+

luminal cells (Figure 1D). If these HR+ cells are signaling to other

cell types, such as basal cells, we would further expect to see a

second activity program in those cells representing the down-

stream paracrine response. Finally, this ‘‘paracrine response’’

activity program should co-vary with the level of ER/PR activa-

tion across different samples (Figure 1D). Thus, we developed

a computational pipeline, DECIPHER-seq, based on the hypoth-

esis that inter-sample transcriptional variation contains mean-

ingful information about how the behaviors of different cell types

in the breast are coordinated at the tissue level, and that tran-

scriptional signatures (‘‘activity programs’’) representing interac-

tions between two cell types should correlate across samples.

DECIPHER-seq uses individual pairwise correlations between

activity programs to build a higher-order network map of coordi-

nated cell state changes in the human breast (Figure 1E).

The activities of two cell types can be coordinated in multiple

ways. In the premenopausal breast, we expect the tissue-level

response to hormones to lead to at least two types of coordinated

interactions: direct cell-to-cell signaling interactions betweenHR+

cells and other cell types, andmore complex downstream interac-

tions involving cell-type-specific responses toa sharedmicroenvi-

ronment.Wepredict that the first typeof interactionwould depend

on the proportion of HR+ cells in the breast, whereas the second

type of interactionwould involve cell-type-specific (e.g., transcrip-

tionally distinct) activity programs that may be enriched for similar

biological processes. Therefore, in downstreamanalyses, we infer

modules that are enriched for direct cell-cell signaling interactions

(i.e.,modulescontaining links thatdependon theproportionofone

cell type across samples), and exclude modules driven by non-

cell-type-specific responses (i.e., modules containing transcrip-

tionally similar activity programs) (Figure 1E). We also define indi-

vidual activity programs and modules by performing gene set

enrichment analysis, which allows us to infer higher-order func-

tional interactions betweenmultiple cell types. Finally, we uncover

associations between annotated metadata features and sets of

activity programs to infer potential sources of biological variation

(Figure 1E). Known biology associated with paracrine signaling

downstream of ER/PR activation provides a powerful ‘‘proof of

concept’’ to establish that correlated changes in cell state can

be used to identify biologically relevant cell-cell interactions.
e premenopausal human breast

son heterogeneity in transcriptional cell state. scRNA-seq workflow: reduction

hen to single cells, followed by MULTI-seq sample barcoding, library prepara-

visualized by UMAP dimensionality reduction and unsupervised clustering of

le S1).
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activation would represent a major source of transcriptional variability in our

inal cells would correlate with transcriptional changes in other cell types—

mone levels due tomenstrual cycling (depicted, left) or hormonal contraceptive

n HR+ luminal cells and the downstream signaling response in other cell types

uilds a tissue-levelmap of the cell-cell interactions present in the healthy human
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Figure 2. Inferring non-cell-type-specific transcriptional responses and direct cell-to-cell signaling interactions in the human breast

(A) Left: heatmap depicting Pearson correlation coefficients between activity programs in the eight major modules identified by DECIPHER-seq. Right: network

graph of correlated activity programs in the human breast. Nodes represent distinct activity programs in the indicated cell types, and edges connect significantly

correlated programs (Pearson correlation coefficient > 0, p < 0.05). Modules of correlated programs were identified using a Constant Potts Model for community

detection.

(B) Left: violin plot of the mean Pearson correlation between gene loadings for each activity program and all other activity programs in the same module (‘‘gene

loading similarity’’). The horizontal dashed line represents the 99% confidence interval for permuted module labels. Right: network graph of activity programs in

the human breast, colored by the p value for gene loading similarity for each program (log scale). p values were calculated by permutation testing.

(C) Heatmap depicting Pearson correlation coefficients between gene loadings for the indicated activity programs. The colored boxes list the top-loading genes

shared by all the programs in the indicated modules.

(D) Network graph of the activity programs in the human breast, with arrows highlighting inferred direct cell-cell interactions. We modeled each pairwise

combination of activity programs as a linear response to the mean expression score of an activity program in a ‘‘sender’’ cell type (b1Y), the proportion of the

‘‘sender’’ cell type in the epithelium (b2 Psender), and an interaction term representing the combined effect of both terms (b3 PsenderY). Arrows highlight pairs where

only the interaction term is significant, themodel describes over 50%of the variation in the response variable, and the FDR-corrected p value for the overall model

is less than 0.01.

(legend continued on next page)
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To identify activity programs within cell types in the premeno-

pausal breast, we performed non-negative matrix factorization

(NMF) on each of the major cell-type clusters in our dataset (Fig-

ure S3A). A similar approach was recently used by Pelka et al.

to identify multicellular immune ‘‘hubs’’ in colorectal cancer (Pelka

et al., 2021). We used integrative NMF (iNMF) (Gao et al., 2021;

Welch et al., 2019), which successfully corrected for batch differ-

ences while retaining sample-to-sample transcriptional variability

(Figures S4A and S4B) and adapted a consensus approach (Kot-

liar et al., 2019) to identify activity programs that were consistent

across replicates (Figure S4C; STAR Methods). The main user-

supplied parameter in NMF is the number of programs identified

(rank, K). None of the three commonly used heuristics for guiding

the choice of K identified an obvious ‘‘elbow’’ in our dataset

(Figures S4D and S4E). We therefore developed a metric based

on the goal of identifying the greatest number of robust (i.e.,

consistent across values of K) and unique (i.e., distinct from other

programs at the same K) activity programs (Figure S5; STAR

Methods). This approach identified distinct ‘‘blocks’’ of activity

programs in multiple cell types that co-varied across samples

(Figure 2A). To build a tissue-level map of these cell-cell interac-

tions, we constructed a weighted network of coordinated activity

programs based on the pairwise Pearson correlations r

(Figures S3B and S6). Based on this analysis, we identified eight

major modules comprising highly correlated transcriptional states

across cell types in the breast (Figures 2A and S6D).

To exclude non-cell-type-specific transcriptional responses—

that are unlikely to be directly related to hormone signaling in the

breast—we identified modules made up of activity programs

with similar gene loadings. We found that modules 7 and 8

were highly enriched for activity programs with correlated gene

loadings (Figures 2B and S7A). Programs in module 7 primarily

consisted of ribosomal transcripts and genes involved in cellular

respiration, whereas programs in module 8 consisted of stress

response genes such as heat shock and chaperone proteins

(Figures 2C and S7C). We speculate that module 8 represents

an artifact of tissue processing rather than biologically meaning-

ful transcriptional variation, since prior studies have identified a

similar signature in dissociated solid tissues (O’Flanagan et al.,

2019). However, one advantage of DECIPHER-seq is that it

describes cells as a combination of activity programs rather

than forcing cells into distinct clusters. Thus, samples with high

expression of ‘‘dissociation-related’’ activity programs still

contain biologically meaningful signals from other programs

and can be retained in the analysis.

Next, we inferred modules enriched for putative direct cell-cell

signaling interactions by identifying interactions between two

nodes that depended on both the magnitude of activity program

expression in a ‘‘sender’’ cell type and the proportion of that

sender cell type in the tissue (Figures 1E and 2D). We reasoned

that if one cell type was signaling to another, the activity program

representing the transcriptional response in the ‘‘receiver’’ cell

type should be sensitive to the proportion of sender cells in the

tissue, particularly for direct interactions involving short-range
(E) Results from multiple linear regression analysis, depicting the four most sig

combination, the response variable was modeled in response to three predictors

‘‘sender’’ cell type, and an interaction term between both predictors. Points rep

standard error.
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signaling molecules. While this simplified model does not

consider the effects of signal amplification, cooperation between

signaling pathways, or higher-order interactions between more

than two cell types, it identifies a subset of ‘‘high-confidence’’

direct cell-cell interactions that meet a set of simple criteria.

We annotated putative direct cell-cell signaling interactions as

those where the combined effects of signaling from a sender

cell type and its proportion in a tissue described over 50% of

the variation in activity program expression across samples in

a second ‘‘receiver’’ cell type, and the individual effects of

signaling and cell proportions were not significant (Figure 2D;

STAR Methods). As the proportion of epithelial versus stromal

cells in our samples may be influenced by tissue dissociation,

we restricted our analysis to links between epithelial cell types

as "sender’’ cells (HR+ luminal, secretory luminal, or basal cells)

and all cell types as ‘‘receivers.’’ We modeled each pairwise

interaction as a linear response to three variables: signaling

from a sender cell type (i.e., the mean expression score of an ac-

tivity program in that cell type), the proportion of the sender cell

type in the epithelium, and an interaction term representing the

combined effects of signaling and cell proportions (Figure 2D).

Consistent with our prediction about the nature of hormone

signaling in the breast, four out of the five high-confidence direct

cell-cell interactions (false discovery rate [FDR] < 0.01) were part

of the same module (module 3), and consisted of a link between

HR+ luminal cells as the ‘‘sender’’ cell type and a second

‘‘receiver’’ cell type (Figures 2D and 2E).

ER/PR signaling and the downstream transcriptional
response
We next performed marker and gene set enrichment analysis to

define potential functions for activity programs within each mod-

ule and identify common pathways upregulated across multiple

activity programs in a module (STAR Methods; Tables S3 and

S4). We first focused on module 3 (Figures 3A and S8A), as our

previous analysis demonstrated that this module was highly en-

riched for putative direct cell-cell signaling interactions. Since es-

trogen and progesterone aremaster regulators of breast develop-

ment that act via paracrine signaling from HR+ luminal cells to

other cell types, we predicted that ER/PR signaling and the down-

stream paracrine response would represent a major source of

direct cell-cell signaling signatures present in our dataset.

Consistentwith thishypothesis, activity programs inmodule3—

here annotated as the ‘‘ER/PR response’’ module—were highly

enriched for genes previously found to be upregulated during the

luteal phase of the menstrual cycle in a bulk RNA-seq analysis

(module enrichment p < 0.01; Figure 3B; Table S5; Pardo et al.,

2014). Activity program 1 in HR+ luminal cells (‘‘ER/PR signaling’’)

was associated with high expression of the essential PR target

genes WNT4 and TNFSF11 (RANKL) (Rajaram et al., 2015; Tanos

et al., 2013), and enriched for transcripts in the Molecular Signa-

tures Database Hallmark ‘‘early estrogen response’’ (p < 0.001)

and ‘‘late estrogen response’’ (p < 0.01) gene sets (Figures 3C,

S8B, and S8C; Liberzon et al., 2015). Additional canonical HR+
nificant (FDR < 0.01) inferred direct cell-cell interactions. For each pairwise

: the expression score in a ‘‘sender’’ cell type (signaling), the proportion of the

resent the regression coefficient for each predictor, and error bars depict the
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Figure 3. ER/PR signaling and the downstream response

(A) Diagram highlighting activity programs in the ‘‘ER/PR response’’ module.

(B) Left: gene set enrichment analysis of the indicated activity programs in the ‘‘ER/PR response’’ module, showing the enrichment of genes upregulated during

the luteal phase of the menstrual cycle (Pardo et al., 2014). The top five leading edge genes for each activity program are listed. Right: network graph of activity

programs, colored by the FDR for gene set enrichment of genes upregulated during the luteal phase of the menstrual cycle (log scale; Pardo et al., 2014). The

FDR-corrected p value for enrichment of this gene set in the ‘‘ER/PR response’’ module was determined by permutation analysis.

(C) Heatmap of the top 10 marker genes for HR+ 1 and HR+ 8. Results depict the Pearson correlation between the expression score of the indicated activity

programs and the normalized expression of the indicated genes across cells.

(D) Representative immunostaining for LRRC26, P4HA1, and KRT7 and quantification of the relative mean intensity of P4HA1 signal in LRRC26-/KRT7+ and

LRRC26+/KRT7+ regions of interest (p < 0.008, unpaired t test). Data are represented as individual points, and error bars indicate mean ± SEM of 8 regions

from 3 samples with high ER/PR signaling. Scale bars, 20 mm. Inset scale bars, 10 mm.

(E) Network graph of activity programs, colored by the FDR for enrichment of the indicated gene sets in each activity program (log scale). FDR-corrected p values

for overall enrichment of gene sets within module 1 were determined by permutation analysis.
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genes including TFF1, AREG, PGR, and VEGFA were highly ex-

pressed across multiple activity programs in this module (Fig-

ure S8D; Aupperlee et al., 2013; Hyder et al., 2000; LaMarca and

Rosen, 2007; Ribieras et al., 1998). Consistent with previous

work demonstrating that STAT5 acts as a cofactor to mediate

signaling downstream of PR activation in the breast, the ER/PR

response module was also enriched for genes involved in IL-2/

STAT5 signaling (module enrichment p < 1e�4; Figure S8E).

Finally, gene set enrichment analysis identified a rare subpopula-

tion of proliferative secretory luminal cells within the ER/PR

responsemodule (Figure 3B). This ‘‘proliferation’’ activity program
(Secretory program 16) was highly enriched for cell-cycle-related

genes previously found to be upregulated during the luteal phase

of the menstrual cycle (Figure 3B; Table S5; Pardo et al., 2014).

Our analysis also revealed that high levels of ER/PR signaling in

HR+ cells (HR+ 1) coincidedwith the emergence of a second tran-

scriptional state in a distinct subpopulation of HR+ luminal cells

(HR+ 18) (Figures 3C and S8F). Marker and gene set enrichment

analysis demonstrated that HR+ program 18 was characterized

by upregulation of a hypoxia gene signature and pro-angiogenic

factors such as VEGFA and ANGPTL4 (Figures S8D and S8G).

The identification of this ‘‘hypoxia’’ gene signature is consistent
Cell Systems 13, 1–21, August 17, 2022 7
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Figure 4. Coordinated changes in signaling states across cell types in the breast

(A) Network diagram highlighting modules 1–6.

(B) Network graph of activity programs in the human breast, colored by the Pearson correlation of each program’s mean expression score across samples with

ER/PR signaling (HR+ activity program 1). Significant positive and negative correlations (p < 0.05) as identified by bootstrap resampling are represented by

larger nodes.

(C) Network graph of activity programs, colored by the FDR for enrichment of genes in the GO Biological Process set ‘‘endoplasmic reticulum unfolded protein

response’’ (log scale). Overall enrichment of this gene set within module 2 was determined by permutation analysis.

(D) Heatmap of selected estrogen receptor (ER) target genes. Results depict the Pearson correlation between the expression score of the indicated activity

programs and the normalized expression of ER target genes across cells.

(legend continued on next page)
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with a previous study using microdialysis of healthy human breast

tissue, which found that VEGF levels increased in the luteal phase

of the menstrual cycle (Dabrosin, 2003). As estrogen response el-

ements have been identified in the untranslated regions of VEGFA

(Hyder et al., 2000), our results suggest that this increased expres-

sion may be, in part, a direct effect of hormone signaling to a sub-

population of HR+ cells.

To confirm these results in vivo, we performedmarker analysis

to identify genes specific to each cluster that could be used for

immunostaining. We identified LRRC26 as a marker of the ER/

PR signaling activity program HR+ 1 and P4HA1 as a marker

of the hypoxia/pro-angiogenic activity program HR+ 18 (Fig-

ure 3C). In intact human tissue sections, we found that

LRRC26 staining marked a distinct set of luminal cells from

P4HA1 (Figure 3D). Moreover, these two subpopulations co-

occurred within the same regions of the breast, demonstrating

that they are unlikely to be an artifact of sample processing.

Together, these results identify at least two diverging transcrip-

tional states in HR+ cells in samples with high ER/PR signaling,

one associated with signaling via RANK ligand and WNT4 to

the surrounding epithelium and a second associated with a hyp-

oxia-related/pro-angiogenic transcriptional signature.

We next expanded our analysis of gene activity programs to

other epithelial lineages and stromal cell types in the ‘‘ER/PR

response’’ module. Similar to program 18 in HR+ cells, multiple

activity programs across other cell types in this module were en-

riched for transcripts involved in hypoxia and blood vessel re-

modeling including VEGFA and ANGPTL4 (Figures 3E, S8D,

and S8G). The ER/PR response module was also enriched for

genes involved in tissue remodeling, cell migration, and ECM or-

ganization (Figures 3E and S8H), consistent with previously re-

ported morphological changes in the breast epithelium (Ramak-

rishnan et al., 2002) and alterations in stromal organization and

ECM composition (Ferguson et al., 1992; Hallberg et al., 2010)

across the menstrual cycle. Stromal cell types in this module

were characterized by upregulation of ECM andmatrix remodel-

ing proteins including collagens (COL3A1, COL1A2), the cross-

linking enzyme LOXL2, and the cytokine TGFB3 (Figure S8I).

Together, these results identify distinct transcriptional signatures

for ER/PR activation in HR+ luminal cells and the downstream

paracrine response in other cell types.

Coordinated changes in signaling states across cell
types in the breast
Next, we used a similar approach to analyze the remaining

five major modules—annotated here as ‘‘resting state,’’ ‘‘ER

activation,’’ ‘‘involution-like,’’ ‘‘post-lactational involution,’’ and
(E) Left: gene set enrichment analysis of the indicated activity programs in the ‘‘i

enrichment of genes previously shown to be upregulated during the post-lactation

each activity program are listed. Right: network graph of activity programs, colo

scale). FDR-corrected p values for overall enrichment of this gene set in each of

(F) Network graph of activity programs, depicting the relative association of the in

(G) Network graph of activity programs, colored by the FDR for enrichment of the i

for overall enrichment of gene sets within the indicated modules were determine

(H) Heatmap of selected genes including milk proteins, MHC Class II molecules,

between the expression score of the indicated activity programs and the normal

(I) Network graph of activity programs, colored by the FDR for enrichment of the in

for overall enrichment of gene sets within module 5 were determined by permuta

(J) Network graph of activity programs, depicting the relative association of the in
‘‘regulation of branching morphogenesis’’—each made up of

highly interconnected transcriptional states across cell types in

the breast (Figure 4A). The ‘‘resting state’’ module (module 1,

Figure S9A) consisted of gene expression programs that were

negatively correlated with ER/PR signaling (HR+ program 1) in

HR+ luminal cells (Figure 4B). Activity programs in this module

were enriched for pathways involved in RNA processing and

transport (Figure S9B). The ‘‘ER activation’’ module (module 2,

Figure S9C), consisted of activity programs linked to both the

‘‘resting state’’ and ‘‘ER/PR response’’ modules (Figure 4A).

This module was enriched for genes involved in the unfolded

protein response (UPR) and endoplasmic reticulum stress

(Figures 4C, S9D, and S9E), as well as the response to estrogen

(Figure S9D). Prior work has shown that ER activation leads to a

rapid ‘‘anticipatory’’ activation of the UPR in the absence of

accumulation of unfolded proteins (Andruska et al., 2015). In

keeping with this, expression of canonical ER target genes

such as PGR, AREG, TFF1, and TFF3 was most closely associ-

ated with HR+ cell activity programs in this ‘‘ER activation’’ mod-

ule as well as the ‘‘ER/PR response’’ module (Figure 4D).

Gene set enrichment analysis of the ‘‘post-lactational involu-

tion’’ module (module 6, Figure S10A) and ‘‘involution-like’’ mod-

ule (module 4, Figure S10D) uncovered transcriptional signatures

in secretory luminal cells that were similar to those that have

been described during post-lactational involution in the mouse

(Figures 4E and S10E; Table S6; Stein et al., 2004). Activity pro-

grams in both modules were characterized by high expression of

death receptor ligands such as TNFSF10 (TNF-related

apoptosis-inducing ligand, TRAIL) and TNF (Figure 4F) and of

genes involved in the immune response, including interferon-

response genes (Figure 4G). We annotated module 6 as related

to post-lactational involution, since activity program expression

in secretory luminal cells within this module (secretory program

22) was highly associated with expression of milk proteins (Fig-

ure 4H) and genes involved in lactation (Figure S10B). Moreover,

activity programs across all cell types in this module were more

highly expressed in parous (P) versus nulliparous (NP) samples

(Figure S10C). This ‘‘post-lactational involution’’ module was

also enriched for genes involved in the acute phase response,

complement proteins, and defense response, consistent with

pathways that have been previously described as upregulated

during post-lactational involution in the mouse (Figure S10F;

Stein et al., 2004). Since prior studies in human tissue samples

have shown that differences in lobular area and epithelial archi-

tecture between P and NP women persist for up to 18 months

following weaning (Jindal et al., 2014), we speculate that activity

programs in this module may be associated with the time since
nvolution-associated’’ and ‘‘post-lactational involution’’ modules, showing the

al involution in themouse (Stein et al., 2004). The top five leading edge genes for

red by the FDR for enrichment of genes upregulated in the Stein gene set (log

the indicated modules was determined by permutation analysis.

dicated marker genes with each activity program (arbitrary units, linear scale).

ndicated gene sets in each activity program (log scale). FDR-corrected p values

d by permutation analysis.

and the phagocytic receptor MARCO. Results depict the Pearson correlation

ized expression of the indicated genes across cells.

dicated gene sets in each activity program (log scale). FDR-corrected p values

tion analysis.

dicated marker genes with each activity program (arbitrary units, linear scale).
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weaning, although more complete patient data would be

required to formally test this hypothesis.

The ‘‘involution-like’’ signature (module 4) in secretory luminal

cells was characterized by expression of major histocompatibil-

ity complex class II (MHC-II) molecules and the phagocytic re-

ceptor MARCO (Figure 4H), suggesting that these cells play a

role as non-professional phagocytes in the clearance of

apoptotic cells, similar to what has been described during

post-lactational involution (Monks et al., 2008). As previous

data have demonstrated that the fraction of apoptotic cells in

the mammary epithelium peaks between the late luteal and early

follicular phases of the menstrual cycle, this module may repre-

sent the response to falling hormone levels at the end of themen-

strual cycle (Anderson et al., 1982). TGFB3 is a major signaling

molecule involved in post-lactational involution that enhances

phagocytosis by mammary epithelial cells (Fornetti et al.,

2016), suggesting that TGFB3 secreted by cells in response to

ER/PR signaling (Figure S8I) activates a subset of secretory

luminal cells that go on to express ‘‘involution-like’’ markers.

Finally, we annotated module 5 (Figure S10G) as associated

with ‘‘regulation of branching morphogenesis’’ based on enrich-

ment for the gene ontology (GO) term ‘‘branching morphogen-

esis of an epithelial tube’’ (Figures 4I and S10H). Consistent

with the critical role of Rac and Rho GTPases in mammary

branching (Ewald, 2008), the GO term ‘‘regulation of GTPase ac-

tivity’’ was also highly enriched across this module (Figure 4I).

Activity programs in this module were also associated with

genes involved in cell motility, mechanotransduction, and inva-

sion—including ERBB2, PIEZO1, PLXNB2, and PLXND1 (Fig-

ure 4J)—that have been previously described as important for

epithelial remodeling (Gay et al., 2011; Stewart et al., 2021;

Worzfeld et al., 2012).

Together, these results demonstrate how the underlying sam-

ple-to-sample variability in the breast can be used to infer func-

tional connections between cell types in cell-cell interaction net-

works. Using DECIPHER-seq, we provide a comprehensive,

systems-level view of the transcriptional changes that underlie

normal breast morphogenesis.

The ER/PR signaling response of HR+ luminal cells is
reduced in parous women
Previous epidemiologic analyses have demonstrated that prior

pregnancy is highly protective against ER+/PR+ breast cancer

(Fortner et al., 2019), and decreased hormone responsiveness

following pregnancy is one proposed mechanism for this effect

(Britt et al., 2007). Supporting this, previous studies demon-

strated decreased expression of the PR effector WNT4 following

pregnancy (Meier-Abt et al., 2014; Muenst et al., 2017). More-

over, in an explant culture model, estrogen consistently induced

expression of the ER target gene AREG only in NP women (Dun-

phy et al., 2020). As our network analysis suggested that activity

programs in the ‘‘ER/PR response’’ module were dependent on

both the magnitude of signaling from HR+ luminal cells and their

proportion in the tissue (Figures 2D and 2E), we hypothesized

that decreased hormone responsiveness could be caused by

either (1) a change in the magnitude of paracrine signals

produced by each HR+ luminal cell and/or (2) a reduction in

the overall proportion of HR+ luminal cells leading to a ‘‘dilution’’

of paracrine signals following ER/PR activation. It has been diffi-
10 Cell Systems 13, 1–21, August 17, 2022
cult to distinguish between these mechanisms using bulk

tissue-level analyses. By individually probing the single-cell tran-

scriptional landscape of the HR+ luminal cell population and

downstream cell types, scRNA-seq provided a means to directly

interrogate whether parity influences the per-cell hormone

signaling response of HR+ luminal cells.

To quantify variation in ER/PR signaling in HR+ luminal cells,

we first measured the similarity between each sample’s single-

cell distribution across HR+ activity program 1 (ER/PR signaling).

Hierarchical clustering identified two sets of samples, represent-

ing those with high or low ER/PR signaling (Figure 5A). Based on

this, we found that while the levels of hormone signaling in HR+

luminal cells varied between NP women—likely reflecting differ-

ences in hormone levels across the menstrual cycle or due to

hormonal contraceptive use—per-cell ER/PR signaling in HR+

luminal cells was significantly reduced in P women (p < 0.02,

Mann-Whitney test; Figure 5B) and did not depend on other bio-

logical variables such as age and BMI (Figure S11A). Equal

numbers of individuals from each cohort were using hormonal

contraceptives (n = 4 out of 11 NP or P individuals, Table S1).

For women not using hormonal contraceptives (n = 7 out of 11

NP or P individuals), we modeled the expected number of sam-

ples with high ER/PR signaling based on a binomial distribution

using average menstrual cycle phase lengths (Bull et al., 2019).

The number of NP samples with high ER/PR signaling was

consistent with the expected number of samples in the luteal

phase (2 of 7 samples, p = 0.24), whereas the number of P sam-

ples with high hormone signaling was significantly lower than ex-

pected based on the average length of the follicular and luteal

phases of the menstrual cycle (0 of 7 samples, p = 0.02) (Fig-

ure 5C). These results remained consistent when we used a

model accounting for previously reported differences in the rela-

tive lengths of the follicular versus luteal phases in P women (Fig-

ure S11B; Barrett et al., 2014). Thus, the decreased per-cell ER/

PR signaling seen in HR+ luminal cells from P women cannot be

explained by differences in hormonal contraceptive use or

random sampling across the menstrual cycle.

To identify differentially expressed genes between NP and P

women with high sensitivity, we generated a ‘‘pseudo-bulk’’ da-

taset of aggregated HR+ luminal cells from each sample (STAR

Methods) and confirmed that P women had decreased expres-

sion of the canonical HR+ genes AREG, WNT4, PGR,

TNFSF11 (RANKL), and TFF1 (Figure 5D; Table S7). The PR itself

is an ER target gene (Kastner et al., 1990). Staining for the PR

confirmed that PR expression was reduced in luminal cells in P

samples in both our original sequenced cohort of samples

(‘‘discovery’’ set, p < 0.005) and a second independent cohort

of samples (‘‘validation’’ set, p < 0.05) (combined p < 0.002,

Mann-Whitney test; Figure 5E). This reduction in PR expression

was not due to broad changes in the lobular architecture of P

women, as our results were consistent when we restricted our

analysis to either lobular (TDLUs, terminal ductal lobular units)

or ductal regions of the epithelium (Figure S11C).

Finally, we confirmed that paracrine signaling downstream

of PR activation was reduced in P samples by assessing the ef-

fects of one of these genes, WNT4. As WNT4 from HR+ luminal

cells has been shown to signal to basal cells (Rajaram et al.,

2015), we performed co-immunostaining for the WNT effector

TCF7 and basal/myoepithelial cell marker p63 and found that
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Figure 5. The ER/PR signaling response of HR+ luminal cells is reduced in parous women

(A) Heatmap showing the similarity between each sample’s single-cell expression score distribution across HR+ activity program 1 (ER/PR signaling), measured

as (1 - Jensen-Shannon distance). Hierarchical clustering (complete linkage) identifies two sets of samples representing high or low expression of the ‘‘ER/PR

signaling’’ gene program. The mean expression score for HR+ activity program 1 is annotated at the bottom of the heatmap (arbitrary units, linear scale).

(B) Ridge plots depicting the distribution of HR+ program 1 (ER/PR signaling) expression in HR+ luminal cells across nulliparous (NP) versus parous (P) samples

and quantification of the average expression score for HR+ program 1 (n = 22 samples, p < 0.02, Mann-Whitney test). Data are represented as individual points;

box indicates the median and interquartile range (IQR) for 11 nulliparous and 11 parous samples; whiskers extend from Q1 � 1.5IQR to Q3 + 1.5IQR.

(C) Binomial probability distribution for the expected number of sampleswith high ER/PR signaling. The binomial probability of high ER/PR signaling ismodeled as

the average length of the luteal phase of the menstrual cycle, in days, divided by the average total length of the menstrual cycle (p = 0.42) (Bull et al., 2019).

(D) Volcano plot highlighting the differential expression of canonical hormone-responsive genes between parous and nulliparous ‘‘pseudo-bulk’’ samples in HR+

luminal cells. Dots represent individual genes.

(E) Immunostaining for PR and KRT7 and quantification of the percentage of PR+ cells within the KRT7+ luminal compartment for nulliparous (NP) versus parous

(P) samples (n = 34 samples, p < 0.002, Mann-Whitney test). Results are shown for a subset of the original cohort of sequenced samples (‘‘discovery set,’’ n = 19

samples, p < 0.005) and a second independent cohort of samples (‘‘validation’’ set, n = 15 samples, p < 0.05). Scale bars, 100 mm. Data are represented as

individual points; box indicates the median and interquartile range (IQR) for the combined dataset (n = 17 nulliparous samples and 17 parous samples); whiskers

extend from Q1 � 1.5IQR to Q3 + 1.5IQR.

(F) Immunostaining for TCF7, p63, and KRT7, and quantification of the percentage of TCF7+ cells within the p63+ basal/myoepithelial cell compartment for

nulliparous (NP) versus parous (P) samples (n = 33 samples, p < 3e�6, Mann-Whitney test). Results are shown for a subset of the original cohort of sequenced

samples (‘‘discovery set,’’ n = 18 samples, p < 1e�4) and a second independent cohort of samples (‘‘validation’’ set, n = 15 samples, p < 0.01). Scale bars, 50 mm.

Data are represented as individual points; box indicates the median and interquartile range (IQR) for the combined dataset (n = 17 nulliparous samples and 16

parous samples); whiskers extend from Q1 � 1.5IQR to Q3 + 1.5IQR.
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TCF7 expression was markedly decreased in P samples (overall

p < 3e�6, ‘‘discovery’’ set p < 1e�4, ‘‘validation’’ set p < 0.01,

Mann-Whitney test; Figure 5F). Again, this decrease was not

due to differences in lobular architecture, as TCF7 staining was

reduced in both ducts and TDLUs in P samples (Figure S11D).
Together, these data demonstrate that ER/PR signaling is a

source of transcriptional variation among HR+ luminal cells,

that transcription along this axis (HR+ activity program 1)

is reduced in women with prior history of pregnancy, and that

these transcriptional changes in HR+ cells coincide with a
Cell Systems 13, 1–21, August 17, 2022 11
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reduction in downstream paracrine signaling to basal/myoepi-

thelial cells.

Parity and BMI influence epithelial cell proportions
Based on our previous finding that paracrine signaling from HR+

luminal cells to other epithelial cell types is strongly influenced by

the proportion of HR+ cells in the epithelium (Figures 2D and 2E),

we next asked whether the architectural changes associated

with parity would contribute to systematic changes in epithelial

cell proportions, and thus influence hormone responsiveness

across samples. The breast undergoes a major expansion of

the mammary epithelium during pregnancy, followed by a

regression back toward the pre-pregnant state after weaning in

a process called involution. Following involution, the epithelial ar-

chitecture remains distinct from that of women without prior

pregnancy, consisting of larger TDLUs containing greater

numbers of acini. At the same time, individual acini are reduced

in size (Russo et al., 1992).

We focused our initial analysis on the 63,583 cells in the live/

singlet and epithelial sort gates to get an unbiased view of how

the epithelial composition of the breast changes with pregnancy.

The proportion of basal/myoepithelial cells in the epithelium was

approximately 2-fold higher in women with prior history of preg-

nancy (P) relative to women without prior pregnancy (NP)

(Figures 6A and S12A; FDR < 0.02, Wald test with post hoc mul-

tiple-comparisons test). This effect remained significant when

we controlled for menstrual cycle stage and/or exogenous hor-

mones (i.e., hormonal contraceptive use) using our previously

identified ‘‘ER/PR signaling’’ score (Table S8). We confirmed

these results in an expanded cohort of samples using three addi-

tional methods. First, we measured basal cell proportions by

flow cytometry analysis of EpCAM and CD49f. Consistent with

scRNA-seq clustering results, parity was associated with an in-
Figure 6. Reproductive history and body mass index are associated w

(A) Quantification of the proportion of the indicated cell types by scRNA-seq for nu

non-obese samples (n = 16 samples, Wald test). Data are represented as individ

nulliparous and 11 parous samples. Right: n = 6 samples with BMI < 30 and 10 s

(B) Representative flow cytometry analysis of the percentage of EpCAM�/CD49f
centage of basal cells in nulliparous (NP) versus parous (P) women (n = 18 sample

cohort of sequenced samples (‘‘discovery set,’’ n = 9 samples, p < 0.008) and a sec

Data are represented as individual points; box indicates the median and interqua

ples); whiskers extend from Q1 � 1.5IQR to Q3 + 1.5IQR.

(C) Immunostaining for the basal/myoepithelial marker p63 and pan-luminal marke

p63+ basal cells to KRT7+ luminal cells in nulliparous (NP) versus parous (P) women

of the original cohort of sequenced samples (‘‘discovery set,’’ n = 17 samples, p

samples, p < 0.001). Data are represented as individual points; box indicates them

and 16 parous samples); whiskers extend from Q1 � 1.5IQR to Q3 + 1.5IQR. Sc

(D) Two-dimensional geometric model of the relative space available for basal cell

Acini were modeled as hollow circles with a shell thickness (w) proportional to the

parous (n = 158 acini from 15 samples) or nulliparous (n = 164 acini from 16 sample

absolute percentage error = 6.6%). Scale bars, 15 mm.

(E) Left: UMAP depicting log normalized expression of KRT23 in reduction mam

mean and frequency of KRT23, ESR1, and PGR expression across luminal cell t

(F) Co-immunostaining of PR, KRT23, and the pan-luminal marker KRT7, and quan

cell populations (n = 41 samples; p < 5e�13,Mann-Whitney test). Data are represe

for 41 samples; whiskers extend from Q1 � 1.5IQR to Q3 + 1.5IQR. Scale bars,

(G) Co-immunostaining of KRT23 and KRT7 and linear regression analysis of th

p < 1e�8, Wald test). Scale bars, 50 mm. Results are shown for a subset of the orig

p < 3e�5) and a second independent cohort of samples (‘‘validation’’ set, n = 16 s

lines represent the best-fit lines for the discovery cohort (light gray), validation co

(H) Summary of changes in epithelial cell proportions with prior pregnancy and o
crease in the average proportion of EpCAM�/CD49f+ basal cells
from about 15% to about 40%of the epithelium (Figure 6B; over-

all p < 3e�5, ‘‘discovery’’ set p < 0.008, ‘‘validation’’ set

p < 0.008, Mann-Whitney test). The proportion of basal cells

did not vary with other discriminating factors such as BMI or hor-

monal contraceptive use but was weakly associated with age

(R2 = 0.20, p < 0.04, Wald test) (Figure S12C). To determine

the relative effect of each factor, we performed multiple linear

regression analysis and found that the basal cell fraction posi-

tively correlated with pregnancy history (p < 2e�05, Wald test),

but not age (p = 0.17, Wald test) (Figure S12D; Table S9; R2 =

0.77, p < 8e�6).

Dissociation of tissue for scRNA-seq or FACSmay affect mea-

surements of cell composition. We therefore performed two

further analyses to confirm these findings in intact tissue. First,

we reanalyzed two previously published microarray datasets of

total RNA isolated from core needle biopsies from either pre-

menopausal (n = 71 P/42 NP) or postmenopausal (n = 79 P/30

NP) women (Peri et al., 2012; Santucci-Pereira et al., 2019) and

confirmed a significant increase in the basal/myoepithelial

markers KRT5, KRT14, and TP63 relative to luminal markers in

P samples (Figure S12E). Second, we performed immunostain-

ing and confirmed an approximately 2-fold increase in the ratio

of p63+ basal cells to KRT7+ luminal cells in intact tissue sections

(Figure 6C; overall p < 4e�7, ‘‘discovery’’ set p < 6e�4, ‘‘valida-

tion’’ set p < 0.001, Mann-Whitney test). Immunostaining

demonstrated that this change in epithelial proportions was spe-

cific to TDLUs rather than ducts (Figures 6C and S12F). We hy-

pothesized that the increased frequency of basal/myoepithelial

cells observed in P women could be explained, in part, by

changes in TDLU architecture following pregnancy. To test

this, we performed a morphometric comparison of TDLUs be-

tween P and NP samples in our dataset. Consistent with
ith epithelial cell proportions
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previous reports (Russo et al., 1992), we observed a marked

decrease in the average diameter of individual acini in P women

(Figure S12G; p < 4e�5, Mann-Whitney test). Additionally, we

found that the average thickness of the luminal cell layer

increased in proportion to acinus diameter (Figure S12H; R2 =

0.75, p < 3e�16) and was thus higher in NP women (Figure S12I;

p < 7e�7, Mann-Whitney test). These results were independent

of ER/PR signaling and thus cannot be explained by differences

in menstrual cycle stage (Table S10).

To determine how these parameters influence the relative pro-

portions of each cell type, we implemented a simple geometric

model (Figure 6D; STAR Methods). When normalized to cross-

sectional area (for luminal cells) or perimeter (for basal cells),

there was no change in mean luminal cell density or basal cell

coverage between P versus NP samples (Figure S12J). Across

all samples, the number of basal or luminal cells per acinus

was proportional to the space available for each cell type (Fig-

ure S12K). Geometric modeling accurately predicted the rela-

tionship between the luminal area and outer perimeter for indi-

vidual acini (mean absolute percentage error loss = 6.6%) and

demonstrated that as individual acini increased in size, the space

available for luminal cells (luminal area) increased at a faster rate

than the space available for basal cells (luminal perimeter) (Fig-

ure 6D). Thus, the observed differences in epithelial cell propor-

tions between P and NP samples are not due to a change in

basal/myoepithelial coverage, but rather a change in the overall

morphology of the luminal layer (e.g., thickness and/or diameter)

and relative surface area of individual acini in P women.

While parity was associated with a decreased overall propor-

tion of luminal cells in the epithelium, the proportions of individual

HR+ and secretory subtypes within the luminal compartment

were highly variable. Consistent with previous work (Meier-Abt

et al., 2014; Muenst et al., 2017), we observed reduced fre-

quencies of HR+ luminal cells in P women. However, the propor-

tion of secretory luminal cells was not associated with parity (Fig-

ure 6A). Together, these data suggested that additional factors

influence the relative proportion of HR+ versus secretory cells

within the luminal compartment. Therefore, we performed linear

regression analysis to test for the effects of parity, BMI, age, and

hormonal contraceptive use on the proportions of HR+ versus

secretory luminal cells. We found that the relative proportion of

HR+ luminal cells versus secretory luminal cells was reduced

in obese (BMI R 30) women (Figures 6A and S12B;

FDR < 0.0002, Wald test with post hoc multiple-comparisons

test) and did not vary significantly with other discriminating

factors such as age, reproductive history, or hormonal contra-

ceptive use (Figure S13A; Wald test with post hoc multiple-com-

parisons test). On a continuous scale, every 12 units of BMI was

associated with a 2-fold reduction in the proportion of HR+ cells

in the luminal compartment (Figure S13B; FDR< 0.001,Wald test

with post hoc multiple-comparisons test). Similar to our previous

results, this effect remained significant when we controlled for

ER/PR signaling (Table S11).

One limitation of this dataset derived from RM tissue was that

all samples classified as non-obese were from NP women less

than 24 years old, whereas obese samples were more likely to

be from P and older age women (Table S1; Figure S13C). There-

fore, we performed scRNA-seq analysis on an independent set

of breast core biopsies from healthy premenopausal women
14 Cell Systems 13, 1–21, August 17, 2022
who donated tissue to the Komen Tissue Bank (KTB)

(Figures S13D and S13E; Table S2). In contrast with the RM

cohort, the KTB cohort consisted of older (37–47 years) P sam-

ples with BMI in the normal or overweight range (BMI 20.7–

28.3) (Table S1; Figure S13C). Using the RM cohort as a training

set, we accurately predicted the proportion of HR+ luminal cells

in the KTB cohort as a function of BMI with a mean absolute per-

centage error of 14.8% (Figure S13F).

We next attempted to measure the relative proportion of the

HR+ luminal lineage in situ by performing immunostaining for

ER and PR. As in our previous analysis, we included samples

from both our original sequenced cohort of samples (‘‘discov-

ery’’ set) and a second independent cohort of samples (‘‘valida-

tion’’ set). The ‘‘validation’’ set was well-balanced across age

and BMI, overcoming a limitation of the ‘‘discovery’’ set (Fig-

ure S12G). There was a weak trend toward decreased expres-

sion of ER and/or PR with increasing BMI, but the change was

not statistically significant in the ‘‘validation’’ set or the combined

cohort (Figure S13H). Consistent with the heterogeneous ESR1

and PGR transcript expression we observed in scRNA-seq

data (Figure S1H), ER and PR protein expression by immuno-

staining was variable and partly non-overlapping, ranging from

11% to 71% overlap (Figure S13H, bottom panel). We hypothe-

sized that the variability in hormone receptor staining was due to

changes in ER/PR expression, stability, and nuclear localization

that have all been previously observed based on hormone recep-

tor activation status (Battersby et al., 1992; Métivier et al., 2003;

Petz and Nardulli, 2000). Based on this, we predicted that ER

transcript and protein levels would co-vary across samples

due to the overall proportion of HR+ luminal cells and their hor-

monal microenvironment but would be stochastically expressed

in individual cells at any one time due to fluctuations in mRNA

and protein expression, localization, and stability. To test this,

we performed co-immunostaining and RNA FISH and confirmed

that although ER transcript and protein levels correlate across

tissue sections (R2 = 0.60, p < 0.01), they do not correlate on a

per-cell basis (p = 0.63,Wilcoxon signed-rank test)—on average,

only 31% of cells expressing ESR1 transcript also expressed ER

protein (Figure S13I). Expression of ESR1 or PGR transcript was

highly specific for cells in the HR+ luminal cluster, although the

sensitivity of each transcript for the HR+ cluster was low and var-

ied across individuals (Figure S13J). Thus, these data demon-

strate that immunostaining or RNA FISH for nuclear hormone

receptors underestimates the fraction of cells in the HR+ lineage

and that lack of ER/PR expression cannot be used to reliably

define a cell as part of the secretory versus HR+ luminal cell

lineages.

On the basis of these results, we sought to identify another

marker to distinguish between the luminal lineages, and identi-

fied keratin 23 (KRT23) as highly enriched in the secretory luminal

cell cluster (Figure 6E), as was also reported by a previous

scRNA-seq study (Nguyen et al., 2018). Immunohistochemistry

for KRT23 and PR or ER confirmed that these proteins are ex-

pressed in mutually exclusive luminal populations (Figures 6F,

S13K, and S13L). KRT23 thus represents a discriminatory

marker between the two luminal populations. Staining in an

expanded cohort of intact tissue sections confirmed that the

proportion of KRT23+ secretory luminal cells increased by

about 20% for every 10-unit increase in BMI (Figure 6G; overall
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R2 = 0.68, p < 1e�8; ‘‘discovery’’ set R2 = 0.76, p < 3e�5;

‘‘validation’’ set R2 = 0.70, p < 3e�5). Using multiple regression

analysis, we confirmed that the proportion of KRT23-positive

cells in the luminal compartment was significantly associated

with BMI, but not parity or age (Figure S13M). Together, these

data demonstrate that there are two independent effects of

reproductive history and body weight on cell proportions in the

mammary epithelium: parity affects the ratio of basal to luminal

cells whereas BMI affects the ratio of HR+ versus secretory

luminal cells (Figure 6H).

Biological variables impact coordinated changes in
signaling states across cell types in the breast
Finally, we used the cell-cell interaction network identified by

DECIPHER-seq to better understand how biological vari-

ables—such as BMI, parity, and hormonal contraceptive use—

affect cell-cell interactions in the breast. Based on the above re-

sults, we propose that parity and BMI affect the hormone

responsiveness of the breast through two distinct mechanisms:

parity decreases the per-cell ER/PR signaling response in HR+

luminal cells, whereas BMI indirectly affects hormone signaling

by reducing the proportion of HR+ luminal cells in the mammary

epithelium (Figure 7A). Consistent with this, both prior pregnancy

and increasing BMI were negatively associated with activity pro-

grams across the ‘‘ER/PR response’’ module and positively

correlated with programs in the ‘‘resting state’’ module

(Figures 7B and S14A). To confirm these results in intact tissue

sections, we performed immunostaining for PR as a measure

of ER activation in HR+ luminal cells, and for TCF7 as a measure

of the downstream paracrine response (Wnt activation) in basal

cells. As expected, we found that PR expression in the HR+

(KRT23�) luminal cell subpopulation was not significantly

different between non-obese and obese women (p = 0.17,

Mann-Whitney test; Figure 7C) but that Wnt signaling in basal

cells was markedly reduced in obese samples (p < 3e�5,

Mann-Whitney test; Figure 7D). We confirmed these results us-

ing multiple linear regression to simultaneously test the effects

of prior pregnancy and obesity. Whereas PR expression in

HR+ (KRT23�) cells was dependent on parity but not obesity,

downstream Wnt signaling in basal cells was dependent on

both variables (Figure 7E).

Second, we took advantage of the different dynamics of serum

estrogen and progestin/progesterone in donors using combined

hormonal contraceptives versus those undergoing natural men-

strual cycles (Figure S14B) to ask whether activity program

expression in the ‘‘involution-like’’ module (module 4) was influ-

enced by the hormonal microenvironment. The natural menstrual

cycle is characterized by an initial rise in estrogen levels during

the follicular phase of the menstrual cycle followed by a com-

bined surge of estrogen and progesterone during the luteal

phase. In contrast, following oral contraceptive use, estrogen

and progestin levels rise simultaneously, reach peak concentra-

tions in the blood about 2 h following ingestion, and return fairly

rapidly to a steady state level over the following 22 h (Fig-

ure S14B; Hampson, 2020). We found that activity programs in

the ‘‘involution-like’’ module were highly correlated with the

use of combined (estrogen/progestin) oral contraceptives

(Figure S14C and S14D). These results suggest that the ‘‘involu-

tion-like’’ phenotype is influenced by hormone levels and
dynamics (since exogenous hormones are associated with

increased expression across this module) but does not require

the precise sequential estrogen/progesterone dynamics

observed during natural menstrual cycles (since estrogen and

progesterone rise simultaneously upon oral contraceptive inges-

tion). Overall, these results demonstrate how sample-to-sample

variation in the breast can be used to predict how specific

changes in transcriptional cell state and cell-type proportions in-

fluence cell-cell interactions in a tissue and to understand some

of the sources of biological variation (e.g., metadata factors) that

control the overall state of the tissue (Figure 7F).

DISCUSSION

In this study, we leverage inter-sample transcriptional variation in

the breast to identify a set of highly correlated ‘‘activity pro-

grams’’ representing the in situ response to hormone receptor

activation in HR+ cells and the effects of downstream paracrine

signaling in other cell types. We uncover additional correlated

programs representing the dynamic response of the breast to

changing hormone levels (e.g., ‘‘involution-like’’). Furthermore,

we show that person-to-person heterogeneity in hormone

responsiveness in the breast is directly linked to two factors

known to be correlated with premenopausal breast cancer

risk—reproductive history and BMI.

Cumulative lifetime hormone exposure is a major determinant

of breast cancer risk (Collaborative Group on Hormonal Factors

in Breast Cancer, 2012). Here, we mapped the coordinated

changes in cell state that occur in response to paracrine

signaling from HR+ luminal cells. Notably, many of these

changes closely mimic those seen during the pregnancy/involu-

tion cycle that have been linked to a transient increased breast

cancer risk following pregnancy (Lyons et al., 2011; O’Brien

et al., 2010; Schedin et al., 2007). First, we identify a proliferative

gene signature in secretory luminal cells that is highly correlated

with hormone signaling in HR+ luminal cells, consistent with pre-

vious studies demonstrating that TNFSF11 (RANKL) and Wnt

control progesterone-mediated epithelial proliferation (Joshi

et al., 2015). Second, we identify previously uncharacterized

subpopulations of HR+ and secretory luminal cells in the cycling

premenopausal breast with transcriptional signatures closely

matching that described for post-lactational involution (Clarkson

et al., 2004; Stein et al., 2004), including upregulation of immune

mediators, MHC class II molecules, and the phagocytic receptor

MARCO. This idea that the menstrual cycle mimics a miniature

pregnancy/involution cycle is consistent with studies showing

that the fraction of apoptotic cells in the epithelium peaks be-

tween the late luteal and early follicular phases (Anderson

et al., 1982). We also observe upregulation of hypoxic gene sig-

natures inmultiple epithelial and stromal cell types that are highly

correlated with hormone signaling in HR+ cells. A previous study

identified these same pathways as highly enriched during post-

lactational involution in the mouse. More importantly from the

perspective of breast cancer risk, this ‘‘hypoxia/pro-angiogenic’’

signature identified breast cancers with increasedmetastatic ac-

tivity (Stein et al., 2009), suggesting that these pathways can be

co-opted by cancer cells to support a permissive tumormicroen-

vironment. Thus, we speculate that many of the same mecha-

nisms underlie both the short-term increased breast cancer
Cell Systems 13, 1–21, August 17, 2022 15
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Figure 7. Biological variables are linked to predicted tissue states

(A) Schematic depicting the model for how parity and obesity impact hormone signaling in the breast through distinct mechanisms. Parity affects per-cell

ER/PR signaling in HR+ luminal cells, and obesity (BMI R 30) leads to a reduction in the proportion of hormone-responsive (HR+) luminal cells in the

epithelium.

(B) Network graph of activity programs in the human breast, colored by the effect size of prior pregnancy (Wilcoxon effect size) or body mass index (Pearson

correlation coefficient) on each activity program (linear scale). Significant positive and negative associations (p < 0.05) are represented by larger nodes (prior

pregnancy: Mann-Whitney test; BMI: Wald test).

(C) Co-immunostaining of the estrogen receptor target gene PR, KRT23, and the pan-luminal marker KRT7 and quantification of the percentage of PR+ cells in the

KRT23�/KRT7+ luminal cell population for nulliparous (NP) versus parous (P) samples (n = 34 samples, p < 0.002, Mann-Whitney test) or non-obese (BMI < 30)

versus obese (BMI R 30) samples (n = 31 samples, p = 0.17, Mann-Whitney test). Results are shown for a subset of the original cohort of sequenced samples

(‘‘discovery’’ set) and a second independent cohort of samples (‘‘validation’’ set). Data are represented as individual points; boxes indicate the median and

interquartile range (IQR) for the combined datasets (Left: N = 17 nulliparous and 17 parous samples. Right: n = 12 samples with BMI < 30 and 19 samples with BMI

R 30); whiskers extend from Q1 � 1.5IQR to Q3 + 1.5IQR. Scale bars, 50 mm.

(D) Immunostaining for TCF7, p63, and KRT7, and quantification of the percentage of TCF7+ cells within the p63+ basal/myoepithelial cell compartment for non-

obese (BMI <30) versus obese (BMI R 30) samples (n = 30 samples, p < 3e�5, Mann-Whitney test). Results are shown for a subset of the original cohort of

sequenced samples (‘‘discovery set,’’ n = 14 samples, p < 4e�4) and a second independent cohort of samples (‘‘validation’’ set, n = 16 samples, p < 0.04). Data

are represented as individual points; box indicates the median and interquartile range (IQR) for the combined dataset (n = 12 samples with BMI < 30 and 18

samples with BMI R 30); whiskers extend from Q1 � 1.5IQR to Q3 + 1.5IQR. Scale bars, 50 mm.

(E) Results from multiple linear regression analysis, with prior pregnancy (parity) and obesity (BMI R 30) as predictors and the percentage of PR+ cells in the

KRT23�/KRT7+ luminal cell population or of TCF7+ cells in the p63+ basal cell compartment as response variables. Points represent the regression coefficient for

each predictor, and error bars depict the standard error.

(F) Summary of results. DECIPHER-seq predicts how specific changes in transcriptional cell state and cell-type proportions influence cell-cell interactions in the

human breast and links specific sources of biological variation (e.g., Parity and BMI) to the overall signaling state of the tissue.
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risk following pregnancy and the lifetime increased risk due to to-

tal number of menstrual cycles.

Pregnancy has two opposing effects on breast cancer risk:

although breast cancer risk is increased for the first 5–10 years

following pregnancy, it also has a pronounced long-term protec-

tive effect, with up to a 50% reduction in ER+/PR+ breast cancer

risk for womenwithmultiple full-term pregnancies at a young age

(Britt et al., 2007). The cellular basis for this long-term protective

effect remains an area of active research. Our analysis revealed

that parity is associated with a stark increase in the proportion of

basal and/or myoepithelial cells within the breast epithelium, as

well as decreased hormone signaling in HR+ luminal cells. While

the precise role of myoepithelial cells during cancer progression

remains an active area of research (Risom et al., 2022), previous

work has described two properties of myoepithelial cells consis-

tent with a tumor-protective effect: they are resistant to malig-

nant transformation (Koren et al., 2015; Proia et al., 2011) and

may also act as a dynamic barrier to prevent tumor cell invasion

(Sirka et al., 2018; Sternlicht et al., 1997). Thus, our data support

the notion that pregnancy protects against breast cancer risk

through multiple mechanisms: by decreasing the relative fre-

quency of luminal cells—the tumor cell-of-origin for most breast

cancer subtypes (Keller et al., 2012; Melchor et al., 2014;

Molyneux et al., 2010), by reducing the overall hormone

responsiveness of HR+ cells and subsequent pro-tumorigenic

microenvironmental changes, and by suppressing progression

to invasive carcinoma (Sirka et al., 2018; Sternlicht et al., 1997).

Finally, we found that paracrine signaling from HR+ cells to

other cell types depends on both the magnitude of signaling

from HR+ cells and the overall proportion of HR+ cells in the

epithelium. Prior pregnancy and obesity are specifically

associated with a reduced risk of ER+/PR+ breast cancer in pre-

menopausal women (Fortner et al., 2019; Premenopausal Breast

Cancer Collaborative Group et al., 2018), and our data are

consistent with a model that these biological variables lead to

reduced paracrine signaling downstream of estrogen and pro-

gesterone via two distinct mechanisms. First, parity leads to a

reduced per-cell hormone signaling response in HR+ luminal

cells. Second, we identify a marked decrease in the ratio of

HR+ cells relative to secretory luminal cells with increasing

BMI. Both changes are associated with reduced paracrine

signaling across the ER/PR response module.

Several potential mechanisms could account for the

decreased hormone signaling response observed in HR+ luminal

cells in P women. Previous studies have identified small reduc-

tions in the levels of estrogen metabolites in the urine of P

women, which may be indicative of lower serum levels of estra-

diol (Barrett et al., 2014). Since PR expression is induced down-

stream of ER activation, lower levels of serum estradiol could

lead to reduced signaling through both ER and PR. A second

possibility is that structural differences in the mammary epithe-

lium of P women, such as increased lobular density (Russo

et al., 1992) or alterations in vascularization could lead to

decreased access of hormones to HR+ luminal cells. Finally,

changes in the differentiation state or epigenetic remodeling of

HR+ luminal cells following pregnancy could lead to a direct

change in the ability of these cells to respond to hormone. Inter-

estingly, recent work has shown that matrix stiffness and/or

compressive stress is required for maintenance of ER expres-
sion in explant cultures, via H3K27me3-dependent epigenetic

regulation (Munne et al., 2021), and previous work has shown

that parity is associated with decreased mammographic density

(Vachon et al., 2000). Further studies are required to determine

whether the decreased hormone response of HR+ luminal cells

in P women is a result of these or other processes.

A key insight of our computational approach is that a subset

of ‘‘high-confidence’’ direct cell-cell interactions can be in-

ferred based on their dependence on the proportion of one

cell type in the tissue. Because the DECIPHER-seq workflow

corrects for batch effects while maintaining meaningful bio-

logical variation and optimizes both the granularity and

robustness of identified activity programs, it has the potential

to be flexibly adapted to a broad range of preexisting single-

cell datasets, or across datasets from multiple sources.

Further, we find that the coordinated activity programs in

our dataset naturally self-organize into a cycle, precisely as

we would expect based on hormone fluctuations across men-

strual cycles. This raises the intriguing possibility that a similar

computational approach could reveal cyclical cellular pro-

grams in other tissue types in the body, such as circadian

rhythms, feeding cycles, or the response to wounding. While

we focus on single-cell transcriptional data in this study,

iNMF has also been applied to multi-omic datasets containing

spatial or epigenetic data together with transcriptional infor-

mation (Welch et al., 2019; Gao et al., 2021).

In summary, using scRNA-seq of a unique cohort of 28 healthy

premenopausal women, we provide a comprehensive, systems-

level view of the cellular and transcriptional variation within the

human breast, which profoundly affects the response to hor-

mones and may impact breast cancer risk. As the human breast

is one of the only human organs that undergoes repeated cycles

ofmorphogenesis and involution, this study serves as a roadmap

for deeper interrogation of the cell state changes associatedwith

hormone dynamics. Finally, it provides a foundation for future

systems-level studies dissecting how the paracrine communica-

tion networks downstream of hormone signaling are altered dur-

ing ER+/PR+ breast cancer progression.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

FITC-EpCAM Stem Cell Technologies 60136Fl

APC-CD49f BioLegend 313616; RRID: AB_1575047

Biotin-CD2 BD Biosciences 555325; RRID: AB_395732

Biotin-CD3 BD Biosciences 555338; RRID: AB_395744

Biotin-CD16 BD Biosciences 555405; RRID: AB_395805

Biotin-CD64 BD Biosciences 555526; RRID: AB_395912

Biotin-CD31 Invitrogen MHCD31154; RRID: AB_2539742

Biotin-CD45 BioLegend 304004; RRID: AB_314392

p63 Cell Signaling Technology 13109; RRID: AB_2637091

KRT7 Abcam AB68459; RRID: AB_1139824

KRT23 Abcam AB156569

ER Fisher Scientific RM9101S; RRID: AB_149901

PR Cell Signaling Technology 8757; RRID: AB_2797144

TCF7 Cell Signaling Technology 2203; RRID: AB_2199302

P4HA1 Thermo Fisher PA5-55353; RRID: AB_2645147

LRRC26 Thermo Fisher PA5-63285; RRID: AB_2643502

Biological samples

Human breast specimens from reduction

mammoplasty surgeries

CHTN and Kaiser Permanente

Northern California

Table S1

Human breast specimens from core biopsies Komen Tissue Bank Table S1

Chemicals, peptides, and recombinant proteins

BV785-Streptavidin BioLegend 405249

Collagenase Type 3 Worthington CLS-3

Collagenase Type 2 Worthington CLS-2

Hyaluronidase Sigma Aldrich H3506

RPMI with HEPES Corning 10-041-CV

Amphotericin B Lonza 17-836E

Gentamicin Lonza 17-518

Dispase Stem Cell Technologies 07913

DNase I Stem Cell Technologies 07900

MEGM Lonza CC-3150

MEBM Lonza CC-3151

Lab Vision Ultra-V Block Thermo Fisher TA-125-UB

UltraVision LP Detection System Thermo Fisher TL-060-HL

Vectashield HardSet Mounting Media with DAPI Vector Labs H-1400

FITC-TSA Akoya Biosciences NEL701A001KT

Cy3-TSA Akoya Biosciences NEL744001KT

Cy5-TSA Akoya Biosciences NEL745E001KT

Probe Hs-ESR1 ACD Bio 310301

Critical commercial assays

Chromium Single Cell 3’ Library & Gel Bead Kit v2 10X Genomics PN-120237

Chromium Single Cell 3’ GEM, Library &

Gel Bead Kit v3

10X Genomics PN-1000075

Chromium Single Cell A Chip Kit 10X Genomics PN-120236
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REAGENT or RESOURCE SOURCE IDENTIFIER

Chromium Single Cell B Chip Kit 10X Genomics PN-1000153

Chromium i7 Multiplex Kit 10X Genomics PN-120262

MULTI-seq Lipid-Modified Oligos Millipore Sigma LMO001-100RXN

Bioanalyzer High Sensitivity DNA Kit Agilent 5067-4626

Qubit dsDNA HS Assay Kit Thermo Fisher Q32851

RNAscope Multiplex Fluorescent Reagent Kit V2 ACD Bio 323100

Deposited data

Raw data and processed scRNA-seq UMI

counts and barcode matrices of reduction

mammoplasty breast specimens

This study GEO: GSE198732

Raw data and processed scRNA-seq UMI

counts and barcode matrices of Komen

Tissue Bank breast specimens

This study GEO: GSE198732

Software and algorithms

CellRanger v3.0.2 10x Genomics Github: https://github.com/10XGenomics/cellranger

MULTI-seq McGinnis et al., 2019b Github: https://github.com/chris-mcginnis-

ucsf/MULTI-seq

SoupOrCell Heaton et al., 2020 Github: https://github.com/wheaton5/souporcell

Seurat v3.1.5 Stuart et al., 2019;

Hafemeister and Satija, 2019

Github: https://github.com/satijalab/seurat

DoubletFinder McGinnis et al., 2019a Github: https://github.com/chris-mcginnis-

ucsf/DoubletFinder

LIGER Gao et al., 2021;

Welch et al., 2019

Github: https://github.com/welch-lab/liger

DECIPHER-seq computational workflow This study Github: https://github.com/lmurrow/DECIPHER-

seq and https://doi.org/10.5281/zenodo.6596414

ape Desper and Gascuel, 2002 Github: https://github.com/emmanuelparadis/ape

Leidenalg Traag et al., 2011 Github: https://github.com/vtraag/leidenalg

wTO Gysi et al., 2018 Github: https://github.com/cran/wTO

fgsea Korotkevich et al., 2019 Github: https://github.com/ctlab/fgsea

DESeq2 Love et al., 2014 Github: https://github.com/mikelove/DESeq2
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Zev Gart-

ner (zev.gartner@ucsf.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
Single-cell RNA-seq data (raw FASTQ files, processed gene expression and barcode count matrices, and de-identified patient meta-

data) have been deposited at the Gene Expression Omnibus (GEO: GSE198732) and are publicly available as of the date of publi-

cation. Accession numbers are listed in the key resources table. All original code has been deposited at Zenodo and Github and

is publicly available as of the date of publication. DOIs are listed in the key resources table. Any additional information required to

reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human tissue samples
Reduction mammoplasty tissue samples were obtained from the Cooperative Human Tissue Network (CHTN, Vanderbilt University

Medical Center, Nashville, TN) and Kaiser Permanente Northern California (KPNC, Oakland, CA). Core biopsy samples were provided
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by the Susan G. Komen Tissue Bank (KTB). Tissues were obtained as de-identified samples and all subjects provided written

informed consent. When possible, medical reports or other patient data were obtained with personally identifiable information re-

dacted. Use of breast tissue specimens to conduct the studies described above were approved by the UCSF Committee on Human

Research under Institutional Review Board protocols 16-18865 and 10-01532. Donor information for all tissue specimens and their

use in scRNA-seq, flow cytometry, and immunostaining experiments is detailed in Table S1.

METHOD DETAILS

Tissue processing
A portion of each sample was fixed in formalin and paraffin-embedded using standard procedures. The remainder was dissociated

mechanically and enzymatically to obtain epithelial-enriched tissue fragments. Tissue was minced, followed by enzymatic dissoci-

ation with 200 U/mL collagenase type III (Worthington CLS-3, samples RM108 - RM203) or collagenase type II (Worthington CLS-2,

samples RM216 - RM314) and 100U/mL hyaluronidase (SigmaH3506) in RPMI 1640with HEPES (Corning 10-041-CV) plus 10% (v/v)

dialyzed FBS, penicillin, streptomycin, amphotericin B (Lonza 17-836E), and gentamicin (Lonza 17-518) at 37 �C for 16 h. For KTB

samples, the resulting cell suspension containing single cells and stroma was frozen and maintained at -180 �C until use. For reduc-

tionmammoplasty samples, the cell suspension was centrifuged at 400 x g for 10min and resuspended in RPMI 1640 plus 10%FBS.

Digested tissue fragments enriched for epithelial cells and closely-associated stroma were collected after serial filtration through

150 mm and 40 mm nylon mesh strainers. Following centrifugation, tissue fragments and filtrate were frozen and maintained at

-180 �C until use.

Dissociation to single cells
The day of sorting, epithelial-enriched tissue fragments from the 150 mm fraction, or total banked material for the KTB samples, were

thawed and digested to single cells by trituration in 0.05% trypsin for 2min, followed by trituration in 5 U/mL dispase (StemCell Tech-

nologies 07913) plus 1mg/mLDNase I (StemCell Technologies 07900) for 2min. Single-cell suspensions were resuspended in HBSS

supplemented with 2% FBS, filtered through a 40 mm cell strainer, and pelleted at 400 x g for 5 min. The pellets were resuspended in

10mL of complete mammary epithelial growthmediumwith 2% v/v FBSwithout GA-1000 (MEGM; Lonza CC-3150). Cells were incu-

bated at 37 �C for 1 h, rotating on a hula mixer, to regenerate surface antigens.

MULTI-seq sample barcoding (Batches 3, 4, and KTB)
Single-cell suspensions were pelleted at 400 x g for 5 min and washed once with 10 mL mammary epithelial basal medium (MEBM;

Lonza CC-3151). For each sample, one million cells were aliquoted, washed a second time with 200 mL MEBM, and resuspended in

90 mL of a 200 nM solution containing equimolar amounts of anchor lipid-modified oligonucleotides (LMOs) and sample barcode ol-

igonucleotides in phosphate buffered saline (PBS). Following a 5-minute incubation on ice with anchor-LMO/barcode, 10 uL of 2 mM

co-anchor LMO in PBSwas added to each sample (for a final concentration of 200 nM), and wells were mixed by gentle pipetting and

incubated for an additional 5 min on ice. Following incubation, cells were washed twice in 200 mL PBS with 1% BSA and pooled

together into a single 15 mL conical tube containing 10 mL PBS/1% BSA. All subsequent steps were performed on ice.

Sorting for scRNA-seq
Cells were pelleted at 400 x g for 5 min and resuspended in PBS/1% BSA at a concentration of 1 million cells per 100 mL, and incu-

bated with primary antibodies. Cells were stained with Alexa 488-conjugated anti-CD49f to isolate basal/myoepithelial cells, PE-con-

jugated anti-EpCAM to isolate luminal epithelial cells, and biotinylated antibodies for lineagemarkers CD2, CD3, CD16, CD64, CD31,

and CD45 to remove hematopoietic (CD16/CD64-positive), endothelial (CD31-positive), and leukocytic (CD2/CD3/CD45-positive)

lineages by negative selection (Lin-). Sequential incubation with primary antibodies was performed for 30 min on ice in PBS/1%

BSA, and cells were washedwith cold PBS/1%BSA. Biotinylated primary antibodies were detectedwith a streptavidin-Brilliant Violet

785 conjugate. After incubation, cells were washed once and resuspended in PBS/1% BSA plus 1 ug/mL DAPI for live/dead

discrimination. Cell sorting was performed on a FACSAria II cell sorter. Live/singlet (DAPI-), luminal (DAPI-/Lin-/CD49f-/EpCAM+),

basal/myoepithelial (DAPI-/Lin-/CD49f+/EpCAM-), or total epithelial (pooled luminal and basal/myoepithelial) cells were collected

for each sample as specified in Table S2 and resuspended in PBS/1%BSAat a concentration of 1000 cells/mL. For Batch 4, an aliquot

of MULTI-seq barcoded cells were separately stained with biotinylated-CD45/streptavidin-Brilliant Violet 785 to enrich for immune

cells, and sorted CD45+ cells were pooled with the Live/singlet fraction as specified in Table S2.

Antibodies and dilutions used (mL/million cells) were as follows: FITC-EpCAM (1.5 mL, Stem Cell Technologies 60136FI, clone

VU1D9), APC-CD49f (4 mL, BioLegend 313616, clone GoH3), Biotin-CD2 (8 mL; BD 555325, clone RPA-2.10), Biotin-CD3 (8 mL;

BD 55338, clone HIT3a), Biotin-CD16 (8 mL; BD 555405, clone 3G8), Biotin-CD64 (8 mL; BD 555526, clone 10.1), Biotin-CD31

(4 mL; Invitrogen MHCD31154, clone MBC78.2), Biotin-CD45 (1 mL; BioLegend 304004, clone HI30), BV785-Streptavidin (1 mL;

BioLegend 405249).

scRNA-seq library preparation
cDNA libraries were prepared using the 10X Genomics Single Cell V2 (CG00052 Single Cell 3’ Reagent Kit v2: User Guide Rev B) or

Single Cell V3 (CG000183 Single Cell 3’ Reagent Kit v3: User Guide Rev B) standard workflows as specified in Table S2. Library
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concentrations were quantified using high sensitivity DNA Bioanalyzer chips (Agilent, 5067-4626) and Qubit dsDNA HS Assay Kit

(Thermo Fisher Q32851). Individual libraries were sequenced on a lane of a HiSeq4500 or NovaSeq, as specified in Table S2, for

an average of �150,000 reads/cell.

Expression library pre-processing
Cell Ranger (10x Genomics) was used to align sequences, filter data and count unique molecular identifiers (UMIs). Data were map-

ped to the human reference genome GRCh37 (hg19). The resulting sequencing statistics are summarized in Table S2. For samples

run across multiple 10X lanes, the cellranger aggr pipeline (10X Genomics) was used to normalize read depth across droplet micro-

fluidic lanes (see ‘‘sort gate’’ information in Table S2).

Cell calling
For V2 experiments, cell-associated barcodeswere defined usingCell Ranger. For V3/MULTI-seq experiments, cells were defined as

barcodes associated with R600 total RNA UMIs and %20% of reads mapping to mitochondrial genes. We manually selected 600

RNA UMIs and 20% mitochondrial genes to exclude low-quality cell barcodes.

MULTI-seq barcode library pre-processing
Raw barcode FASTQs were converted to barcode UMI count matrices as described previously (McGinnis et al., 2019b). Briefly,

FASTQs were parsed to discard reads where: 1) the first 16 bases of read 1 did not match a list of cell barcodes generated as

described above, and 2) the first 8 bases of read 2 did not align with any reference barcode with less than 1 mismatch. Duplicated

UMIs, defined as reads with the same cell barcode where bases 17-28 (V3 chemistry) of read 2 exactly matched, were removed to

produce a final barcode UMI count matrix.

Sample demultiplexing
Barcode UMI count matrices were used to classify cells using the MULTI-seq classification suite (McGinnis et al., 2019b). In Batch 3,

sample RM192 was poorly labeled for the lane of cells from the epithelial cell sort gate. Therefore, to reduce spurious doublet calls in

this dataset, we manually set UMI counts which were <10 for this barcode to zero. For all experiments, raw barcode reads were log2-

transformed andmean-centered, the top and bottom 0.1%of values for each barcode were excluded, and a probability density func-

tion (PDF) was constructed for each barcode. Next, all local maxima were computed for each PDF, and the negative and positive

maxima were selected. To define a threshold between these two maxima, we iterated across 0.02-quantile increments and chose

the quantile maximizing the number of singlet classifications, defined as cells surpassing the threshold for a single barcode. Multi-

plets were defined as cells surpassing two or more thresholds, and unlabeled cells were defined as cells surpassing zero thresholds.

Unclassified cells were removed and the procedure was repeated until all remaining cells were classified.

To classify cells that were identified as unlabeled by MULTI-seq, we used the SoupOrCell pipeline (Heaton et al., 2020) to assign

cells to different individuals based on single nucleotide polymorphisms (SNPs). For each dataset, we set the number of clusters (k) to

the total number of samples in that experiment. To avoid local minima, SoupOrCell restarts clustering multiple times and takes the

solution that minimizes the loss function. For Batch 3, we chose the number of restarts that produced less than a 1.5% misclassifi-

cation rate betweenMULTI-seq and SoupOrCell singlet sample classifications (Live/singlet: 30 restarts/1.2%mismatch rate; Epithe-

lial: 75 restarts/1.5% mismatch rate). SoupOrCell classification performed more poorly across parameters for Batch 4 (Live/singlet

plus CD45+: 50 restarts/8.1% mismatch rate, 75 restarts/4.8% mismatch rate; Epithelial: 50 restarts/8.6% mismatch rate, 75 re-

starts/14.9% mismatch rate, 100 restarts/4.1% mismatch rate). Therefore, for these datasets we used sample classifications that

were consistent across two restarts (Live/singlet plus CD45+: consistent calls across 50 and 75 restarts/0.4% overall mismatch

rate; Epithelial: consistent calls across 50 and 100 restarts/1% overall mismatch rate) to identify high-confidence singlets.

Dataset integration and cell type identification
Cell type identification was performed using the Seurat package (version 3.1.5) in R (Stuart et al., 2019). To identify and remove dou-

blets formed from cells from the same sample that would not be identified by MULTI-seq or SoupOrCell, we filtered each lane to re-

move cells with greater than 20% of reads mapping to mitochondrial genes and ran DoubletFinder (version 2.0) on each data subset

(McGinnis et al., 2019a), using parameters identified by the ‘paramSweep_v3’ function. Aggregated data for singlet cells for each

batch was filtered to remove cells that had fewer than 200 genes and genes that appeared in fewer than 3 cells. Cells with a Z score

of 4 or greater for the total number of genes expressed were presumed to be doublets and removed from analysis. The remaining

cells were log transformed and scaled to a total of 1e4 molecules per cell, and the top 2000 most variable genes based on variance

stabilizing transformation were identified for each batch (Hafemeister and Satija, 2019). Data from all four batches were integrated

using the standard workflow and default parameters from Seurat v3 (Stuart et al., 2019). This data integration workflow identifies pair-

wise correspondences between cells across datasets and uses these anchors to transform datasets into a shared expression space.

Following dataset integration, the resulting batch-corrected expression matrix was scaled, and principal component (PC) analysis

was performed using the identified integration genes. The top 28 statistically significant PCs as determined by visual inspection

of elbow plots were used as an input for UMAP visualization and k-nearest neighbor (KNN) modularity optimization-based clustering

using Seurat’s ‘FindNeighbors’ and ‘FindClusters’ functions.
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PC analysis of individual cell types
To perform principal component analysis on individual cell types, we subset out each cluster from the integrated dataset and

repeated the standard workflow from Seurat v3 to identify integration genes specific to this cell type. The resulting batch-corrected

expression matrices were scaled, and PC analysis was performed using the identified integration genes.

Activity program identification in each cell type
To identify gene expression signatures, or ‘‘activity programs’’, within individual cell types, we subset raw counts data from each of

the five most abundant cell type clusters (HR+ luminal cells, secretory luminal cells, basal/myoepithelial cells, fibroblasts, and endo-

thelial cells) and performedmatrix factorization. We chose to performmatrix factorization independently on each cell type rather than

on the combined dataset, as preliminary analyses demonstrated that the number of gene programs identified for each cell type was

highly dependent on the relative sizes of each cluster in the combined dataset. To correct for batch differences between samples run

on different days, we used the LIGER package in R to perform integrative NMF (iNMF) (Gao et al., 2021; Welch et al., 2019), and per-

formed subsequent gene set enrichment analyses on shared, rather than batch-specific, gene loadings for each activity program.

Activity program expression in cells from the same sample run across different batches was more similar than program expression

in cells from different samples processed in the same batch, demonstrating that this approach successfully corrected for batch dif-

ferenceswhile retaining sample-to-sample transcriptional variability (Figures S4A andS4B). To avoid identification of gene signatures

dominated by highly-expressed transcripts, we normalized the raw counts matrix for each cell based on its total expression, multi-

plied by a scale factor of 1e4, and log-transformed and scaled the result without centering. The resulting datasets (one for each cell

type) were decomposed using the ‘online_iNMF’ function from LIGER (Gao et al., 2021). Online iNMF uses an online learning algo-

rithm to iteratively cycle through the data in small mini-batches, greatly increasing convergence times for large datasets. We per-

formed 10 complete passes (‘max.epochs’ parameter) through each dataset, and chose the mini-batch size (‘miniBatch_size’) by

rounding down to the nearest 500 from the smallest batch size in that cell type (HR+ luminal cells: 1000, Secretory luminal cells:

2000, Basal cells: 500, Fibroblasts: 500, Endothelial cells: 500).

Since solutions to NMF are non-unique, we adapted a consensusmatrix factorization approach from (Kotliar et al., 2019) to identify

activity programs that were consistent across multiple replicates. For each cell type, we ran 20 replicates of iNMF on the same

normalized dataset with the same choice of rank K, starting from different random seeds. We row normalized the resulting 20 shared

gene loadingmatrices (W, each of dimensionKprograms XNgenes) to have an L2 norm of one. Following normalization, we combined the

shared gene loading matrices from each matrix into a 20Kprograms X Ngenes dimensional matrix, where each row represents the gene

loading from one activity program in one replicate. Next, we filtered out programs with a high mean Euclidean distance from their 6

nearest neighbors (30% of replicates), using the third quartile plus 1.5 times the interquartile range (q0.75 + 1.5,IQR) as an outlier

threshold. After filtering outlier programs, we grouped the rows of the resulting matrix using k-means clustering, with the number

of clusters set to the chosen iNMF rank K. Next, we collapsed each group of shared gene loadings to a single consensus vector

by taking the median value for each gene across activity programs in that cluster, to produce a final Kprograms X Ncells consensus pro-

grammatrix,W. We performed the same row normalization on the batch-specific gene loading matrices, filtered programs identified

as outliers in the shared gene loading matrix, and collapsed groups of batch gene loadings into a consensus vector by taking the

median value for each gene across programs in that cluster to produce consensus batchmatrices Vbatch, each of dimensionKprograms

X Ngenes. Finally, we solve for the consensus cell expression score matrix H (Xcells X Kprograms), by using non-negative least squares

initialized with the consensus shared (W) and batch-specific (Vbatch) gene loading matrices.

A key parameter in matrix factorization is the choice of rank K. This parameter determines the granularity of identified activity pro-

grams. Three commonly used heuristics for guiding the optimum choice of K are: 1) minimizing the Frobenius reconstruction error of

the final solution (Kotliar et al., 2019), 2) maximizing the median Kullback-Leibler (KL) divergence of activity program loadings across

cells relative to a uniform distribution (Welch et al., 2019), and 3) estimating the ‘‘dimensionality’’ of the dataset via elbow plot of the

proportion of variance explained across principal components (Kotliar et al., 2019). We propose a metric for choosing an optimum K,

based on the goal of identifying the greatest number of activity programs that are robust (i.e. consistent across multiple choices of K)

and unique (i.e. distinct from other programs at a particular choice ofK). First, we perform consensus iNMF as described above over a

range of ranks, with the sweep range guided by the heuristics described above. Here, we chose a range of 2 to 40 for all cell types.

Next, we use the ‘fastme.bal’ function in the ‘ape’ R package to build a balanced minimum evolution phylogenetic tree based on the

correlation matrix of the gene loadings for activity programs across all ranks (Desper and Gascuel, 2002). For each cell type, we par-

titioned the resulting phylogenetic tree into clusters using an empirical distance threshold to define distinct groups of activity pro-

grams (Prosperi et al., 2011; Figures S5A and S5B). To identify partitions, we first artificially rooted each tree by taking the median

of the activity programs at K = 2. Next, we identified clusters by performing a depth-first search starting from this artificial root,

stopping at sub-trees where the median value of the pairwise patristic distance between all programs in that sub-tree was below

an empirically determined threshold of 0.3 (see Figure S5B). To filter out ‘‘outlier’’ activity programs that are expressed in only

rare contaminating cells (e.g. a ‘‘fibroblast-like’’ gene signature in HR+ luminal cells), we calculated the maximum expression score

for each activity program divided by the mean expression score for the next 50 highest-scoring cells, and removed programs where

this ratio was greater than 5 (Figure S5C). We also removed subtrees with fewer than 5 total activity programs. Finally, we plotted the

number of subtrees identified at each K (excluding outlier programs), weighted by the total number of programs in each subtree. We

choose the optimum K (Kopt) as the saturation point in this curve, representing the point at which increasing the granularity of matrix

factorization does not identify activity programs that comprise major new subtrees (Figure S5D).
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Network clustering of correlated activity programs
To identify sets of activity programs that co-varied across samples, we first decomposed each cell type into a set of distinct gene

expression signatures, or ‘‘activity programs’’, using consensus iNMF with Kopt chosen for each cell type as described above. We

then quantified the average expression of each gene program in each sample and constructed a weighted network of coordinated

gene expression programs based on the pair-wise Pearson correlations between gene programs. To account for correlations driven

by outlier samples, we used bias-corrected and accelerated bootstrap resampling to estimate confidence intervals associated with

each correlation coefficient. The resulting Pearson correlation matrix was transformed into a weighted adjacencymatrix by setting all

Pearson correlation coefficients with p-values greater than 0.05 (based on the null hypothesis r = 0) to zero (Figures S6A and S6B).We

identified modules of highly correlated gene expression programs using a Constant Potts Model for community detection in signed

graphs in the ‘leidenalg’ package in python (Figure S6B; Traag et al., 2011). We ran this algorithm at a range of resolutions from 0.001

to 0.4 and chose the resolution that maximized overall modularity. To filter out isolated links and modules, we calculated the signed

weighted topological overlap (wTO) between activity programs in eachmodule (Gysi et al., 2018) and filtered nodes with lowwTO and

modules containing fewer than four nodes (Figure S6C). In contrast to Pearson correlation values which consider each pair of nodes

in isolation, wTO is based on the similarity of two activity programs’ correlation values with all other programs in the network. We

calculated the mean wTO between each node and all other nodes in the same module, and compared this to the value calculated

for nodes in randomly selected modules of equal size. We determined p-values for each node’s mean wTO by determining the frac-

tion of permutation trials where the mean wTO of nodes from ‘‘random’’ modules was greater than the mean wTO of nodes from

tested modules, and removed nodes where p > 0.01. Community detection results remained unchanged after this filtering step

(Figures S6B and S6D). For visualization, we use positive edges to create a force-directed layout. Consistent with our goal of

choosing the rank K that captured the greatest number of unique activity programs (see above), the overall organization of modules

into cell-cell interaction networks remained highly robust to the choice of rank at values of KRKopt, whereas the network structure at

K % Kopt had much sparser connections between modules (Figure S6E).

Fluorescent immunohistochemistry
For immunofluorescent staining, formalin-fixed paraffin-embedded tissue sections were deparaffinized and rehydrated using stan-

dard methods. Endogenous peroxides were blocked using 3% hydrogen peroxide in PBS, and antigen retrieval was performed in

0.1 M citrate buffer pH 6.0. Sections were blocked for 5 min at room temperature using Lab Vision Ultra-V block (Thermo TA-125-

UB) and rinsedwith TNTwash buffer (1X Tris-buffered saline with 5mMTris-HCl and 0.5%TWEEN-20). Primary antibody incubations

were performed for 1 hour at room temperature or overnight at 4�C. Sections were washed three times for 5 min each with TNT wash

buffer, incubated with Lab Vision UltraVision LP Detection System HRP Polymer (Thermo Fisher TL-060-HL) for 15 min at room tem-

perature, washed, and incubated with one of three colors of tyramide signal amplification amplification (TSA) reagent at a 1:50 dilu-

tion. After TSA, antibody complexes were removed by boiling in citrate buffer, followed by blocking and incubation with additional

primary antibodies as above. Finally, sections were rinsed with deionized water and mounted using Vectashield HardSet Mounting

Media with DAPI (Vector H-1400). Immunofluorescence was analyzed by spinning disk confocal microscopy using a Zeiss Cell

Observer Z1 equipped with a Yokagawa spinning disk and running Zeiss Zen Software.

Antibodies, TSA reagents, and dilutions used are as follows: p63 (1:2000; CST 13109, clone D2K8X), KRT7 (1:4000; Abcam

AB68459, clone EPR1619Y), KRT23 (1:2000; Abcam AB156569, clone EPR10943), ER (1:4000; Thermo Scientific RMM-9101-S,

clone SP1), PR (1:3000; CST 8757, clone D8Q2J), TCF7 (1:2000; CST 2203, clone C63D9), P4HA1 (1:9000; Thermo PA5-55353),

LRRC26 (1:2000; Thermo PA5-63285), FITC-TSA (2 min; Akoya Biosciences NEL701A001KT), Cy3-TSA (3 min; Akoya Biosciences

NEL744001KT), Cy5-TSA (7 min; Akoya Biosciences NEL745E001KT).

Morphometric analysis and geometric modeling
Formalin-fixed paraffin-embedded tissue sections were immunostained for the pan-luminal marker KRT7, counterstained with DAPI

and imaged as described above. Images containing lobular tissue were acquired randomly, and the area and perimeter of the KRT7-

positive luminal layer of each acinus was analyzed in ImageJ. To reduce noise and remove small gaps in KRT7 fluorescence, we

applied a closing filter from the MorphoLibJ plugin with a 2-pixel (1.33 mm) radius disk (Legland et al., 2016). The resulting image

was smoothed by applying a Gaussian filter with sigma 5 pixels (3.33 mm), and binarized using the default thresholding algorithm

in ImageJ. Finally, individual acini with visible lumens were manually selected and the area (A), perimeter (P), and circularity of the

KRT7-positive region was measured for each structure. To estimate the average diameter (d) and luminal thickness (w) of each

acinus, we used area and perimeter measurements to fit a circle containing a hollow lumen to each structure. Based on these results,

we implemented a geometric model in which each acinus was represented as a hollow circle with shell thickness that was linearly

related to diameter (d). Since basal cells form a monolayer along the luminal surface, we represented the space available for basal

cells as the outer perimeter of the luminal layer, and the space available for luminal cells as the area of the luminal layer. To estimate

the linear relationship between w and d, we performed linear regression analysis using measurements from all structures.

RNA FISH analysis of ESR1 transcripts
Combined RNA FISH and immunofluorescence analysis of estrogen receptor transcript (RNAscope Probe Hs-ESR1; ACD 310301)

and protein (anti-ER; ThermoRMM-9101-S, clone SP1) was performed using the RNAscope in situ hybridization kit (RNAscopeMulti-

plex Fluorescent Reagent Kit V2, ACD 323100) according to the manufacturer’s instructions and fluorescent immunohistochemistry
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protocol outlined above with the following modifications. Immunostaining for ER was performed prior to in situ hybridization, using

the hydrogen peroxide and antigen retrieval solutions supplied with the RNAscope kit and the mildest recommended conditions.

After ER immunostaining and tyramide signal amplification, in situ hybridization for ESR1 was performed according to the manufac-

turer’s instructions, followed by immunostaining for KRT7 as described above. For all RNA FISH experiments, we used positive

(PPIB) and negative controls (DAPB) to verify staining conditions and probe specificity.

QUANTIFICATION AND STATISTICAL ANALYSIS

Quantification of sample-to-sample heterogeneity
Cluster entropy: Tomeasure howwell-mixed cells fromdifferent sampleswere across cell type clusters, we quantified the normalized

relative cluster entropy for our dataset, weighted by cluster size (Barkas et al., 2019). A cluster entropy value of 1 represents complete

intermixing of samples across clusters.

Similarity scores/alignment: To measure transcriptional variation in cell state within cell types between cells from the same versus

different batches and/or samples, we measured the pairwise alignment between each sample/batch (Butler et al., 2018), where

batches consisted of sets of samples processed on the same day (Table S2). This ‘‘similarity score’’ examines the local neighborhood

of each cell in a particular sample/batch, asks howmany of its k nearest neighbors (in PC or iNMF space) belong to a second sample/

batch, and averages this over all cells. We chose k to be 1% of the total number of cells within a cluster. The result was normalized by

the expected number of cells from each sample/batch. For repeat measurements, samples run across multiple batches were highly

similar. For Figure S2E, we calculated the pairwise similarity score between each sample/batch using the first 14 principal compo-

nents for each cell type (See also Figure S4E depicting the standard deviation of each principal component). For Figures S4A and

S4B, we calculated the pairwise similarity score between each sample/batch using all iNMF components for each cell type (at

Kopt, see text below for optimization of K).

Testing for changes in cell type proportions
We modeled the detected number of each cell type in each sample as a random count variable using a quasi-Poisson process to

allow for overdispersion, with the condition being tested (e.g. parity, BMI, obesity) as a predictor and the total number of detected

epithelial or luminal cells in each sample as an offset variable (Haber et al., 2017). To account for uncertainty due to variable numbers

of profiled cells in each sample, we used bootstrap resampling to estimate confidence intervals associatedwith detection of each cell

type (Cao et al., 2019). Results from 1000 bootstrap replicates were pooled using the ‘mice::pool’ function in R, and the model was fit

using a quasi-Poisson generalized linear model from the ‘stats’ R package. Tests for statistical significance were performed using a

Wald test on the regression coefficient. Multiple hypothesis correction was controlled using the false discovery rate. For the Komen

Tissue Bank (KTB) data set, a quasi-Poisson model was trained on the reduction mammoplasty cohort as described above, and the

‘predict’ function in the ‘stats’ R package was used to predict the proportion of HR+ luminal cells in the KTB samples based on BMI.

Identification of non-cell-type specific programs
To identify transcriptionally similar activity programs representing non-cell-type specific responses, we calculated the Pearson correla-

tion of gene loadings between activity programs using pairwise complete observations (i.e. excluding genes that are not expressed in

either cell type). We defined each node’s ‘‘mean gene loading similarity’’ as the mean correlation between the tested node and all other

nodes in the samemodule. To determine p-values for each node’s gene loading similarity, we compared this value to that calculated for

nodes in randomly selected modules of equal size. The reported p-values represent the fraction of permutation trials where the mean

gene loading similarity for nodes from ‘‘random’’moduleswasgreater than themeangene loading similarity for nodes in testedmodules.

Inferring direct cell-cell interactions
To infer modules enriched for putative direct cell-cell signaling interactions, we identified links between nodes that depended on both

the magnitude of activity program expression in a ‘‘sender’’ cell type and the proportion of that ‘‘sender’’ cell type in the tissue. Since

the proportion of epithelial versus stromal cells in our samples was highly dependent on tissue dissociation conditions, we restricted

this analysis to links between epithelial cell types as "sender’’ cells (HR+ luminal, secretory luminal, or basal cells) and other cell types

as ‘‘receivers’’. We modeled activity program expression in the ‘‘receiver’’ cell type as a linear response to three predictors: activity

program expression Y in the ‘‘sender’’ cell type (i.e. ‘‘signaling’’ from that cell type), the proportion Psender of the ‘‘sender’’ cell type in

the epithelium, and an interaction term representing the combined effects of signaling and cell proportions (Signaling3 Proportions).

For links between two epithelial cell types, we tested both directions as ‘‘sender’’ versus ‘‘receiver’’ nodes. To infer high-confidence

direct cell-cell signaling interactions, we identified pairwise combinations of activity programs where a) the individual effects of Y and

Psender were not significant (p > 0.05), b) there was a positive interaction effect between Y and Psender (Signaling x Proportions;

p < 0.01 and b > 0), c) the adjusted R-squared for the overall model was at least 0.5, and d) the false discovery rate-corrected p-value

for the overall model was less than 0.05.

Gene set enrichment analysis
To identify marker genes statistically associated with each gene program, we used ordinary least squares regression of each gene’s

normalized (z-scored) expression against the activity program expression score for each program in each cell type, after filtering
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genes not expressed in that cell type (Kotliar et al., 2019). This results in a vector of regression coefficients representing the strength

of the relationship between a cell’s expression score for a particular activity program and its scaled expression of each gene (e.g. see

Figure 4F). The resulting ranked gene lists (Table S3) were analyzed by gene set enrichment analysis, using the ‘fgsea’ package in R

(Korotkevich et al., 2019).

Enrichment of gene sets within modules
To identify gene sets enriched across activity programs in a module, we first calculated the false discovery rate (FDR) for each gene

set in each node. We performed false discovery rate correction for Hallmark and GO Biological Process gene sets separately, as

many of the pathways in each database are highly related. For all gene sets enriched across at least 5 activity programs in our

network, we calculated the number of activity programs in each module that were significantly enriched for each gene set

(FDR < 0.01), and compared this value to randomly selected modules of equal size. We determined p-values for enrichment of

gene sets in each module by determining the fraction of permutation trials where the number of significantly enriched nodes from

‘‘random’’ modules was greater than number of significantly enriched nodes from tested modules.

Sample-to-sample variability in ER/PR signaling
To quantify variation in expression of the ‘‘ER/PR signaling’’ gene program in HR+ luminal cells (HR+ gene program 1), we performed

the following workflow. First, we used the cell loadings across HR+ gene program 1 for each sample to compute kernel density

estimations using the ‘density’ function in the ‘stats’ R package. We excluded sample RM172 from this analysis as it had fewer

than 50 HR+ luminal cells; thus, the resulting kernel density estimation was highly sensitive to individual outliers. Second, we

used the ‘JSD’ function in the ‘philentropy’ R package (Drost, 2018) to measure the pairwise Jensen-Shannon divergence between

samples. Third, we converted this to a distance metric (Jensen-Shannon Distance, JSD) by taking the square root and performed

hierarchical clustering using the ‘hclust’ function in the ‘stats’ R package, using ‘ward.D2’ linkage. The similarity between samples

was plotted on a heatmap as (1-JSD).

Pseudo-bulk differential gene expression analysis
To identify genes differentially expressed between samples from parous and nulliparous individuals in specific cell types, we

constructed pseudo-bulk datasets consisting of the summed raw read counts across all single HR+ luminal cells for each batch

and sample. We restricted our analysis to samples/batches that had at least 100 HR+ luminal cells. Each dataset was then randomly

down-sampled to the lowest library size, and differential expression analysis was performed using DESeq2 (version 1.18.1) to test for

genes differentially expressed between samples from parous and nulliparous individuals, using batch as a covariate (Love et al.,

2014). As certain samples were sequenced across more than one batch (Table S2), replicates of the same sample from different

batches were combined using the ‘collapseReplicates’ function. False discovery rate corrected p-values were calculated using

the Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995).
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Figure S1 - Overview of scRNAseq workflow and basic clustering results



 

Figure S1. Overview of scRNA-seq workflow and basic clustering results; Related to Figure 1 

(A) Overview of sample multiplexing and sorting strategies across batches (also see Table S2). 

(B) FACS plots depicting sort gates used for sequencing. 

(C) TSNE dimensionality reduction of the normalized barcode count matrices and final sample 
classification for MULTI-seq experiments (Batches 3 and 4, also see STAR Methods). 

(D) UMAP dimensionality reduction of the combined data from twenty-eight reduction mammoplasty 
samples (GSE198732) for each sort population. 

(E) Heatmap highlighting marker genes used to identify each cell type, colored by row z-score (linear 
scale). For visualization purposes, we randomly selected 100 cells from each cluster. 

(F) Violin plot highlighting the log expression of selected marker genes in each cluster. 

(G) Dot plot depicting the log normalized average and frequency of ESR1 and PGR expression across 
cell type clusters. 

(H) Euler diagram highlighting the frequency of ESR1 and PGR expression and percent overlap in the 
HR+ luminal cell cluster. 
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Figure S2. Transcriptional variation between samples is independent of batch effect; Related to 
Figure 1 

(A) UMAP dimensionality reduction of the combined data from twenty-eight reduction mammoplasty 
samples (GSE198732) for each sort population before (left) and after (right) batch correction. 

(B) UMAP for each reduction mammoplasty sample highlighting cell types identified by unsupervised 
clustering. Cells from different individuals are well-mixed across all clusters (cluster entropy = 0.93, 
STAR Methods). 

(C) Density plots (arbitrary units, linear scale) highlighting the transcriptional cell state of the indicated 
cell types from each sample. 

(D) UMAP of reduction mammoplasty samples that were run as repeat measurements across multiple 
batches, highlighting cells from each batch. See Table S2 for sample and batch information.  

(E) Quantification of the pairwise alignment—or “similarity score”—between cells from the same or 
different sample and within versus across batches for the indicated cell types. See Table S2 for sample 
and batch information. The dashed line represents the expected similarity score for random mixing. 
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Figure S3. Overview of DECIPHER-seq workflow; Related to Figure 2 

(A) To identify gene activity programs in the breast, we performed non-negative matrix factorization 
(NMF) on each of the major cell types in our dataset, using integrative NMF (iNMF) to account for batch 
differences. As NMF solutions are non-unique, we adapted a consensus matrix factorization approach 
to identify activity programs that were consistent across multiple replicates. To optimize rank K, we 
used phylogenetic clustering of consensus gene loadings across a range of K values and chose the 
point at which increasing granularity did not identify major new subtrees.  

(B) To build a network map of cell-cell interactions, we quantified the average activity program 
expression for each sample and constructed a weighted network based on the pair-wise Pearson 
correlations r. The resulting correlation matrix was transformed into a signed weighted adjacency matrix 
by using bootstrap resampling to estimate confidence intervals associated with each correlation, and 
setting all correlations with p-values > 0.05 to zero. Finally, we identified modules of highly correlated 
gene expression programs using a community detection algorithm, and filtered out isolated links and 
modules using weighted topological overlap. 
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Figure S4. NMF integration, consensus clustering of replicates, and metrics for choice of rank 
sweep; Related to Figure 2 

(A) Heatmaps showing the pairwise alignment (“similarity score”; fraction of nearest neighbors from the 
corresponding sample/batch, linear units) of NMF results for samples run across multiple batches. 
Hierarchical clustering (Ward D2 linkage) groups cells by sample rather than batch. 

(B)  Quantification of the mean pairwise alignment—or “similarity score”—of iNMF results for cells from 
the same sample but different batch (“Sample”) or different sample but same batch (“Batch”) for the 
indicated cell types. See Table S2 for sample and batch information.  

(C) Consensus matrix (frequency, linear units) showing the clustered NMF components for the 
indicated values of K, combined across 20 replicates, before (left) and after filtering (right). The 
histogram shows the mean distance of each component to its 6 nearest neighbors with a dashed line 
showing the threshold for filtering outliers (see STAR Methods). 

(D) Parameter selection for K sweep range. Plots depict the relative Frobenius reconstruction error and 
median KL divergence for consensus results at each value of K. 

(E) Parameter selection for K sweep range. Plot depicting the standard deviation of the first forty 
principal components for each cell type. 
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Figure S5. Phylogenetic clustering of gene programs across rank sweep and final choice of 
rank; Related to Figure 2 

(A) Phylogenetic trees of consensus iNMF components (“activity programs”) for K values ranging from 
2 to 40, based on a balanced minimum evolution algorithm. Each tree was partitioned into distinct 
clusters using a depth-first search to identify sub-trees with median patristic distance below a threshold 
of 0.3 (see below).  

(B) Histogram of each phylogenetic tree’s patristic distance distribution, for phylogenetic trees 
constructed from K sweep values ranging from 2 to 40 (grey) or 2 to 20 (blue). The vertical red line 
shows the distance threshold used in this study of 0.3. We chose an absolute rather than relative (e.g. 
percentile) distance threshold as it was robust to different sweep ranges of K (e.g. the blue versus grey 
histograms). 

(C) Plot depicting the number of “outlier” activity programs filtered at each value of K. Outliers were 
defined as activity programs where the maximum expression score of an activity program across all 
cells was more than 5 times greater than the mean expression score of that activity program in the next 
50 highest-scoring cells.  

(D) Plots depicting the number of subtrees identified at each K, weighted by the total number of 
programs in each subtree (see STAR Methods). Dashed lines depict the chosen values for K (Kopt). We 
chose Kopt as the saturation point representing the point at which increasing the granularity of matrix 
factorization did not identify activity programs that comprise major new subtrees.  
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Figure S6. Network clustering of correlated activity programs; Related to Figure 2 

(A) Left: Heatmap depicting Pearson correlation coefficients (r) between activity programs in all 
identified modules, including filtered modules with low topological overlap. Modules were identified 
using a Constant Potts Model for community detection. Right: Heatmap depicting p-values for the 
Pearson correlation between activity programs in all identified modules (log scale). To estimate p-
values, we used bootstrap resampling to determine confidence intervals for each correlation coefficient, 
and calculated p-values based on the null hypothesis that r = 0.  

(B) Network graph of correlated activity programs in the human breast, including modules with low 
topological overlap, and depicting both positive and negative edges. Nodes represent distinct activity 
programs in the indicated cell types, and edges connect significantly correlated programs (red: Pearson 
correlation coefficient > 0, p-value < 0.05; blue: Pearson correlation coefficient < 0, p-value < 0.05). 
Modules were identified using a Constant Potts Model for community detection.  

(C) Network graph of correlated activity programs in the human breast, with node sizes proportional to 
the relative weighted topological overlap (wTO) of each node with other nodes in the same module 
(arbitrary units, linear scale). Filtered activity programs with a wTO within the 99% confidence interval 
for nodes samples from “random” modules of the same size are highlighted in red.    

(D) Network graph of correlated activity programs in the human breast, excluding modules with low 
topological overlap, and depicting both positive and negative edges. Nodes represent distinct activity 
programs in the indicated cell types, and edges connect significantly correlated programs (red: Pearson 
correlation coefficient > 0, p-value < 0.05; blue: Pearson correlation coefficient < 0, p-value < 0.05).  

(E) Top: Network graph of correlated activity programs in the human breast, excluding modules with 
low topological overlap, for values of K at (Kopt - 10) and (Kopt + 10). Nodes represent distinct activity 
programs in the indicated cell types, and edges connect significantly correlated programs (Pearson 
correlation coefficient > 0, p-value < 0.05). Modules of correlated programs were identified using a 
Constant Potts Model for community detection. Bottom: Plots depicting the number of subtrees 
identified at each K, weighted by the total number of programs in each subtree (see STAR Methods). 
Dashed lines depict the chosen values for K (Kopt), (Kopt - 10), and (Kopt + 10) for each cell type.  
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Figure S7. Non-cell-type-specific shared transcriptional responses across cell types in the 
human breast; Related to Figure 2 

(A) Heatmap depicting Pearson correlation coefficients between gene loadings for all activity programs. 
Activity programs in modules 7 and 8 are highlighted by a yellow box. 

(B) Network graph of activity programs, colored by the FDR for enrichment of the indicated gene sets in 
each activity program (log scale). Overall enrichment of gene sets within module 7 was determined by 
permutation analysis. 

(C) Network graph of activity programs, colored by the FDR for enrichment of the indicated gene sets in 
each activity program (log scale). Overall enrichment of gene sets within module 8 was determined by 
permutation analysis. 
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Figure S8. The “ER/PR response” module; Related to Figure 3 

(A) Diagram highlighting activity programs in the “ER/PR response” module. 

(B) Gene set enrichment analysis for HR+ activity program 1 (“ER/PR signaling”), showing the top 
pathways identified from the Molecular Signatures Database Hallmark gene sets, and the top 10 gene 
loadings in HR+ program 1. 

(C) PCA plot of HR+ luminal cells depicting expression of WNT4 and TNFSF11 (RANKL) in log 
normalized counts. 

(D) Network graph of activity programs, depicting the relative association of the indicated hormone-
responsive genes with each activity program (arbitrary units, linear scale). 

(E) Network graph of activity programs, colored by the FDR for enrichment of the “IL2-STAT5 signaling” 
Hallmark gene set in each activity program (log scale). Overall enrichment within module 3 was 
determined by permutation analysis. 

(F) Left: Plot of the average expression score for HR+ activity program 1 (“ER/PR signaling”) versus 
activity program 18 (“hypoxia”) (Pearson r = 0.52). Dots represent the average expression score of 
each gene program within a sample. Right: Scatter plot of the per-cell average expression score for 
HR+ activity program 1 (“ER/PR signaling”) versus activity program 18 (“hypoxia”) (Pearson r = -0.14). 
Dots represent the expression score of each activity program within individual HR+ luminal cells. 

(G) Top: Gene set enrichment analysis for HR+ activity program 18 (“hypoxia”), showing the top 
pathways identified from the Molecular Signatures Database Hallmark gene sets, and the top 10 gene 
loadings in HR+ program 18. Bottom: Network graph of activity programs, depicting the relative 
association of the hypoxia-related gene ANGPTL4 with each activity program (arbitrary units, linear 
scale). 

(H) Network graph of activity programs, colored by the FDR for enrichment of the indicated Molecular 
Signatures Database gene sets in each activity program (log scale). Overall enrichment of gene sets 
within module 3 was determined by permutation analysis. 

(I) Network graph of activity programs, depicting the relative association of the indicated marker genes 
with each activity program (arbitrary units, linear scale). 
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Figure S9. The “Resting state” and “Estrogen receptor (ER) activation” modules; Related to 
Figure 4 

(A) Diagram highlighting activity programs in the “Resting state” module. 

(B) Network graph of activity programs, colored by the FDR for enrichment of the indicated Molecular 
Signatures Database gene sets in each activity program (log scale). Overall enrichment of gene sets 
within module 1 was determined by permutation analysis. 

(C) Diagram highlighting activity programs in the “ER activation” module. 

(D) Gene set enrichment analysis for HR+ activity program 5 (“ER activation”), showing the top 
pathways identified from the Molecular Signatures Database Hallmark and GO Biological Process gene 
sets, and the top 15 gene loadings in HR+ program 5. 

(E) Network graph of activity programs, colored by the FDR for enrichment of the indicated Molecular 
Signatures Database gene sets in each activity program (log scale). Overall enrichment of gene sets 
within module 2 was determined by permutation analysis. 
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Figure S10. The “Post-lactational involution”, “Involution-like”, and “Regulation of branching 
morphogenesis” modules; Related to Figure 4 

(A) Diagram highlighting activity programs in the “Post-lactational involution” module. 

(B) Gene set enrichment analysis of Secretory cell activity program 22 in the “Post-lactational 
involution” module, showing enrichment of genes in the Molecular Signatures Database GO “Lactation” 
gene set. The top five leading edge genes are listed. 

(C) Quantification of the mean expression score for the indicated activity programs for nulliparous (NP) 
versus parous (P) samples (n = 22 samples, p < 0.05, Mann-Whitney test).  

(D) Diagram highlighting activity programs in the “Involution-like” module. 

(E) Gene set enrichment analysis of the indicated activity programs in the “Involution-like” module, 
showing enrichment of genes previously shown to be upregulated during post-lactational involution in 
the mouse (Stein et al., 2004). The top five leading edge genes for each activity program are listed. 

(F) Network graph of activity programs, colored by the FDR for enrichment of the indicated Molecular 
Signatures Database gene sets in each activity program (log scale). Overall enrichment of gene sets 
within module 6 was determined by permutation analysis. 

(G) Diagram highlighting activity programs in the “Regulation of branching morphogenesis” module. 

(H) Gene set enrichment analysis of the indicated activity programs in the “Regulation of branching 
morphogenesis” module, showing enrichment of the Molecular Signatures Database gene set 
“Branching Morphogenesis of an Epithelial Tube”. The top five leading edge genes for each activity 
program are listed. 
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Figure S11. Reduced ER/PR signaling in parous samples; Related to Figure 5 

(A) Quantification of the average expression score of HR+ program 1 (ER/PR signaling) across the 
indicated biological variables (Hormonal contraceptive use: n = 28 samples, p = 0.19, Mann-Whitney 
test; BMI: n = 16, R2 = 0.01, p = 0.25, Wald test; Age: n = 28 samples, R2 = 0.04, p = 0.16, Wald test). 

(B) Binomial probability distribution for the expected number of parous samples with high ER/PR 
signaling. The binomial probability of high ER/PR signaling was modeled as the average length of the 
luteal phase of the menstrual cycle in parous women, in days, divided by the average total length of the 
menstrual cycle in parous women (P = 0.03) (Barrett et al., 2014). 

(C) Immunostaining for PR and KRT7 in ducts and terminal ductal lobular units (TDLUs), and 
quantification of the percentage of PR+ cells within the KRT7+ luminal compartment for nulliparous 
(NP) versus parous (P) samples (n = 34 samples, Mann-Whitney test). Results are shown for a subset 
of the original cohort of sequenced samples (“discovery set”, n=19 samples) and a second independent 
cohort of samples (“validation” set, n = 15 samples). Scale bars 100 µm. 

(D) Immunostaining for TCF7, p63, and KRT7 in ducts and terminal ductal lobular units (TDLUs), and 
quantification of the percentage of TCF7+ cells within the p63+ basal/myoepithelial cell compartment 
for nulliparous (NP) versus parous (P) samples (n = 33 samples, Mann-Whitney test). Results are 
shown for both the original cohort of sequenced samples (“discovery set”, n=18 samples) and a second 
independent cohort of samples (“validation” set, n = 15 samples). Scale bars 50 µm. 

 
  



5

10

15

20

20 40 60 80 100

23% 53%

77% 47%

Secretory luminalHR+ luminal

UMAP 1

U
M

AP
 2

B BMI < 30 BMI ≥ 30

Basal Secretory luminalHR+ luminal

UMAP 1
U

M
AP

 2
A Nulliparous Parous

13.7% 34.3%

86.3% 65.7%

C

0

20

40

60

%
 C

D4
9+

 c
ell

s 
in 

ep
ith

eli
um

20 30 40
Age

R  = 0.20
p <  0.04

2

20 30 40 50 60
BMI

R  = 0.03
n.s.

2

Hormonal contraceptive use

n.s.

none combined progestin

Epithelial cell proportions by flow cytometry

Age

Parity

Response 
variable:

Pr
ed

ic
to

rs

% 
CD49f+

R2 = 0.77
FDR < 8e-6

Model summary:

***

0 20 40

D

Marker Set Gene 
Symbol Probe ID Log2 Fold

Change P-value

KRT5 201820_at 0.41 0.000 0.000 **

KRT14 209351_at 0.34 0.001 0.005 **

TP63 209863_s_at 0.32 0.003 0.012 *

KRT8 209008_x_at 0.20 0.083 0.249
KRT18 201596_x_at 0.16 0.183 0.366
KRT19 201650_at 0.05 0.775 0.775

Log fold-change parous versus nulliparous samples
Data from:  Peri et al. BMC Medical Genomics 2012, 5:46.  

Luminal 
markers

FDRMarker Set Gene 
Symbol Probe ID Log2 Fold

Change P-value

KRT5 201820_at 0.49 0.001 0.006 **

KRT14 209351_at 0.61 0.002 0.010 *

TP63 209863_s_at 0.42 0.008 0.032 *

KRT8 209008_x_at 0.28 0.033 0.099
KRT18 201596_x_at 0.08 0.637 1.000
KRT19 201650_at -0.04 0.880 1.000

Log fold-change parous versus nulliparous samples
Data from:  Santucci-Periera et al. Breast Cancer Res 2019, 21:1.  

Basal/
myoepithelial

markers 

Luminal 
markers

FDR
Log2 FC

0

E Premenopausal Postmenopausal

Basal/
myoepithelial

markers 

NP P

0.1

0Av
er

ag
e 

ba
sa

l c
el

l c
ov

er
ag

e 
(n

uc
le

i/μ
m

)

p = 0.89

F

p63
KRT7
DAPI

KRT7
DAPI

Nulliparous ParousG

NP P

100

0

Av
er

ag
e 

ac
in

i d
ia

m
et

er
 (μ

m
)

50

p < 4e-5

Acinus diameter (um)

W
id

th
 o

f lu
m

in
al

 la
ye

r (
um

)

R  = 0.75
p <  3e-16

2

H

I

Luminal area (μm  )2

4000
0

60

80

KR
T7

+ 
nu

cle
i

R  = 0.86
p <  3e-16

2

20

30

Luminal perimeter (um)

p6
3+

 n
uc

lei

R  = 0.48
p <  3e-16

2

10

2000100 300200

40

20

KJ

Av
er

ag
e 

lu
m

in
al

 c
el

l d
en

si
ty

 (n
uc

le
i/μ

m
  )2

NP P

0.02

0.00

p = 0.19

D
uc
t

Nulliparous Parous

R
at

io
 p

63
:K

R
T7

 p
os

iti
ve

 c
el

ls

NP P

1.0

p = 0.08

0.5

0

1.5
discovery
(p = 0.48)
validation
(p = 0.12)

Duct

NP P

20

0

Av
er

ag
e 

w
id

th
 o

f l
um

in
al

 la
ye

r (
μm

)

10

p < 7e-7

Figure S12 - Prior history of pregnancy is associated with an 
increased proportion of basal cells in the mammary epithelium 

Log2 FC

0



 

Figure S12. Prior history of pregnancy is associated with an increased proportion of basal cells 
in the mammary epithelium; Related to Figure 6 

(A) UMAP plot of sorted live/singlet and epithelial cells from nulliparous and parous samples from the 
reduction mammoplasty dataset (GSE198732), with the percent of luminal and basal/myoepithelial cells 
highlighted. 

(B) UMAP plot of sorted live/singlet and epithelial cells from non-obese (BMI < 30) and obese (BMI ≥ 
30) samples from the reduction mammoplasty dataset (GSE198732), highlighting hormone-responsive 
(HR+) and secretory luminal cells. 

(C) Quantification of the percentage of EpCAM-/CD49f+ basal cells identified by flow cytometry analysis 
versus age (n = 23; R2 = 0.20; p < 0.04, Wald test), body mass index (n = 21; R2 = 0.03; p = 0.44, Wald 
test), or hormonal contraceptive use (n = 23; p = 0.50, Kruskal-Wallis test). 

(D) Results from multiple linear regression analysis, with prior pregnancy (parity) and age as predictors 
and the percentage of EpCAM-/CD49f+ basal cells in the epithelium as the response variable (Parity p < 
2e-5; Age p = 0.17; overall R2 = 0.77, p < 8e-6, Wald test). 

(E) Microarray differential expression analysis for selected genes from Santucci-Periera et al. and Peri 
et al. (Peri et al., 2012; Santucci-Pereira et al., 2019). 

(F) Immunostaining for the basal/myoepithelial marker p63 and pan-luminal marker KRT7 in ductal 
regions, and quantification of the ratio of p63+ basal cells to KRT7+ luminal cells in nulliparous (NP) 
versus parous (P) women (n = 32 samples; p = 0.08, Mann-Whitney test). Results are shown for a 
subset of the original cohort of sequenced samples (“discovery set”, n=17 samples, p = 0.48) and a 
second independent cohort of samples (“validation” set, n = 15 samples, p = 0.12). Scale bars 50 µm. 

(G) Immunostaining for the pan-luminal marker KRT7, and quantification of the average acinar diameter 
in TDLUs from nulliparous (NP) versus parous (P) samples (n = 31 samples, p < 4e-5, Mann-Whitney 
test). Scale bars 50 µm. Inset scale bars 15 µm. 

(H) Linear regression analysis of the width of the luminal layer versus acinus diameter for individual 
acini (n = 391 acini from 37 samples; R2 = 0.75, p < 3e-16, Wald test). 

(I) Quantification of the average width of the luminal layer in acini from TDLUs in nulliparous (NP) 
versus parous (P) samples (n = 37 samples; p < 7e-7, Mann-Whitney test). 

(J) Quantification of the average luminal cell density (nuclei per μm2 of luminal area) and basal cell 
coverage (nuclei per μm of luminal perimeter) in acini from TDLUs in nulliparous (NP) versus parous 
(P) samples (n = 37 samples; luminal cell density: p = 0.19, Mann-Whitney test; basal cell coverage: p 
= 0.89, Mann-Whitney test). 

(K) Left: Linear regression analysis of the perimeter of the luminal layer versus the number of p63+ 
basal cells for individual acini (n = 391 acini from 37 samples; R2 = 0.48, p < 3e-16, Wald test). Right: 
Linear regression analysis of the area of the luminal layer versus the number of KRT7+ luminal cells for 
individual acini (n = 391 acini from 37 samples; R2 = 0.86, p < 3e-16, Wald test). 
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Figure S13. The proportion of HR+ luminal cells is reduced in obese women, does not vary with 
other discriminating factors, and is underestimated by staining for ER/PR; Related to Figure 6 

(A) Proportion of HR+ luminal cells in each sample identified by scRNA-seq clustering, as a function of 
age, reproductive history, or hormonal contraceptive (HC) use (Wald test). 

(B) Quasi-Poisson regression model of the proportion of HR+ cells in the luminal compartment as a 
function of BMI (FDR < 0.001, Wald test). 

(C) Scatter plots highlighting differences in body mass index (BMI), reproductive history, and age 
between the Komen Tissue Bank (KTB) and reduction mammoplasty cohorts (see also Table S1). The 
trend line depicts the positive association of BMI with age in the reduction mammoplasty cohort, which 
is absent in the KTB cohort. 

(D) TSNE dimensionality reduction of the normalized barcode count matrices and final sample 
classification for MULTI-seq barcoding of KTB samples. 

(E) UMAP dimensionality reduction and unsupervised clustering of the combined data from seven KTB 
samples (GSE198732, Table S1) identifies the major epithelial and stromal cell types in the breast. 

(F) A quasi-Poisson regression model accurately predicts the proportion of HR+ cells in the luminal 
compartment as a function of BMI in an independent cohort of core biopsy samples from the Komen 
Tissue Bank (KTB; mean absolute percentage error = 14.8%). 

(G) Linear regression analysis of BMI versus age in the “discovery” and “validation” cohorts. The 
“validation” cohort is well-balanced across age and BMI. 

(H) Left: Representative image of co-immunostaining of ER, PR, and KRT7. Top right: Linear 
regression analysis of the percentage of PR+ luminal cells versus BMI (n = 31 samples, R2 =0.06, p = 
0.09, Wald test). Bottom right: Linear regression analysis of the percentage of ER+ luminal cells versus 
BMI (n = 29 samples R2 =0.05, p = 0.11, Wald test). Scale bars 50 µm. Venn diagram highlights the 
average percent overlap between ER and PR as measured by immunostaining, for samples where both 
ER and PR were co-immunostained (n = 5 samples, range = 11-71%). 

(I) Multiplexed in situ hybridization of estrogen receptor transcript (ESR1) and immunostaining for 
estrogen receptor protein (ER) and KRT7. Scale bars 25 µm. Right: Quantification of the expression of 
ESR1 and ER across multiple tissue sections (R2 = 0.6, p < 0.01, Wald test) or within individual cells (p 
= 0.63, Wilcoxon matched pairs signed-rank test). 

(J) Table and bar plot depicting the sensitivity and specificity for ESR1 or PGR transcript expression in 
the HR+ luminal cell versus secretory luminal cell cluster based on scRNA-seq analysis. 

(K) Representative images of co-immunostaining of PR, KRT23, and the pan-luminal marker KRT7. 
(See quantification of n = 41 samples in Figure 6F). 

(L) Co-immunostaining of ER, KRT23, and the pan-luminal marker KRT7 and quantification of the 
percentage of ER+ cells within the KRT7+/KRT23- and KRT7+/KRT23+ luminal cell populations (n = 5 
samples; p < 0.01 Mann-Whitney test). Scale bars = 50 µm. 

(M) Results from multiple linear regression analysis, with body mass index (BMI), prior pregnancy 
(parity), and age as predictors and the percentage KRT23+ cells in the KRT7+ luminal compartment as 
the response variable (BMI p < 1e-4; Parity p = 0.29; Age p = 0.35; overall R2 = 0.69, p < 7e-6, Wald 
test). 
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Figure S14. Association of cell-cell interaction modules with reproductive history, body mass 
index, and hormonal contraceptive use; Related to Figure 7 

(A) Heatmap depicting the relative average expression score (column z-score, linear scale) of the 
indicated activity programs in each sample. Samples were ordered by the mean Z-score of all programs 
within the “ER/PR response” module. Activity programs were ordered by hierarchical clustering 
(complete linkage). Significant associations with parity or BMI are indicated by asterisks (* p < 0.05, ** p 
< 0.01; parity: Mann-Whitney test; BMI: Wald test). 

(B) Schematic depicting relative estrogen and progestin levels and dynamics across the natural 
menstrual cycle and in donors using combination (E/P) hormonal contraceptives. Samples from donors 
using hormonal contraceptives were used as a “virtual experiment” to test the effects of 
estrogen/progesterone treatment on downstream signaling pathways. 

(C) Network graph of activity programs in the human breast, colored by the effect size of combined 
hormonal contraceptive use (Wilcoxon effect size, linear scale)) on each activity program. Significant 
positive and negative associations are represented by larger nodes (Mann-Whitney test). 

(D) Heatmap depicting the relative average expression score (column z-score, linear scale) of the 
indicated activity programs in each sample. Samples were ordered by the mean Z-score of all programs 
within the “Involution-like” module. Activity programs were ordered by hierarchical clustering (complete 
linkage). Significant associations with combined hormonal contraceptive use are indicated by asterisks 
(* p < 0.05, ** p < 0.01; Mann-Whitney test). 
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