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SUMMARY
The breast is a dynamic organ whose response to physiological and pathophysiological conditions alters its
disease susceptibility, yet the specific effects of these clinical variables on cell state remain poorly annotated.
We present a unified, high-resolution breast atlas by integrating single-cell RNA-seq, mass cytometry, and
cyclic immunofluorescence, encompassing a myriad of states. We define cell subtypes within the alveolar,
hormone-sensing, and basal epithelial lineages, delineating associations of several subtypes with cancer
risk factors, including age, parity, and BRCA2 germline mutation. Of particular interest is a subset of alveolar
cells termed basal-luminal (BL) cells, which exhibit poor transcriptional lineage fidelity, accumulate with age,
and carry a gene signature associated with basal-like breast cancer. We further utilize a medium-depletion
approach to identify molecular factors regulating cell-subtype proportion in organoids. Together, these
data are a rich resource to elucidate diverse mammary cell states.
INTRODUCTION

Breast cancer is heterogeneous, comprising distinct subtypes

with unique therapeutic vulnerabilities possibly rooted in their

distinct cells of origin (Visvader and Stingl, 2014). However,

investigation of early tumor formation and progression has

been limited by an underdeveloped, occasionally conflicting

annotation of mammary lineages. Existing annotations are often

defined by a small number of markers that inadequately capture

mammary intra-lineage heterogeneity. Many questions remain

regarding the diversity of the mammary cellular landscape and

how it changes in relation to cancer risk factors, such as age,

parity, and germline mutations in breast cancer predisposition

genes such asBRCA1/2. Thus, there is a pressing need to define

breast cell types/states more comprehensively at high resolution

from a broad spectrum of samples.

The mammary gland is composed of an epithelial bilayer and a

supportive stroma (Inman et al., 2015; Polyak and Kalluri, 2010).

Within the epithelium, basal/myoepithelial (BA) cells contract to
1400 Developmental Cell 57, 1400–1420, June 6, 2022 ª 2022 Elsevi
help express milk during lactation and provide structural support

to two luminal populations: alveolar (AV) and hormone-sensing

(HS) cells. AV cells give rise to milk-producing cells during lacta-

tion,whereasHScells integrate endocrine signals to controlmam-

mary growth and differentiation. AV and HS cells have historically

been termed luminal progenitors andmature luminal cells, respec-

tively, based on in vitro assays (Fu et al., 2020; Shackleton et al.,

2006; Stingl et al., 2006). However, recent post-natal lineage

tracing in murine glands show these two cell types are not hierar-

chically organized but rather are independent (Blaas et al., 2016;

Davis et al., 2016; Elias et al., 2017; Lilja et al., 2018; Rios et al.,

2014; Rodilla et al., 2015; Van Keymeulen et al., 2017; Wang

et al., 2017). These mammary epithelial cell (MEC) lineages un-

dergo dramatic alterations inmorphology and function throughout

a human life, including in puberty, pregnancy, andmenopause (Fu

et al., 2020; LaBarge et al., 2016; Slepicka et al., 2021).

Many physiological/genetic variables and cancer risk factors

influence MEC composition. Depending on cohorts analyzed

and methods employed, previous studies have reported various
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alterations in MEC proportions and properties associated with

aging, parity, and germline BRCA1/2 mutations (Benz, 2008;

Britt et al., 2007; Choudhury et al., 2013; Ding et al., 2019; Garbe

et al., 2012; Honeth et al., 2015; Karaayvaz-Yildirim et al., 2020;

King et al., 2004; Lim et al., 2009; Mote et al., 2004; Nolan et al.,

2016; Pal et al., 2021; Pelissier Vatter et al., 2018; Proia et al.,

2011; Russo et al., 1992; Shalabi et al., 2021). These studies

have provided somewhat fragmented views of the mammary

cell landscape; a systematic, high-resolution taxonomy of the

breast can provide a framework for large-scale studies to delin-

eate the effects of risk factors on cancer development.

Recent advances in single-cell technologies like single-cell

RNA sequencing (scRNA-seq) and mass cytometry (cytometry

by time-of-flight; CyTOF) have enabled a more comprehensive

evaluation of mammary cell diversity (Bach et al., 2017; Bhat-

Nakshatri et al., 2021; Colacino et al., 2018; Giraddi et al.,

2018; Henry et al., 2021; Hu et al., 2021; Kanaya et al., 2019;

Knapp et al., 2017; Li et al., 2020; Mahendralingam et al.,

2021; Nguyen et al., 2018; Pal et al., 2021, 2017; Pelissier Vatter

et al., 2018; Rosenbluth et al., 2020; Scheele et al., 2017; Twigger

et al., 2022; Wuidart et al., 2018). However, a comprehensive

atlas of breast cell types has not yet been constructed due to

high inter-individual variability, highlighting a need for broader

studies to capture full intra-lineage cell diversity. In particular, a

multi-omic approach may reveal nonsynonymous levels of het-

erogeneity (Chung et al., 2019; Ding et al., 2020; Hao et al., 2021).

Here, we report a high-resolution breast cell taxonomy gener-

ated by integrating scRNA-seq (n = 16), CyTOF (n = 38), and cyclic

immunofluorescence (CyCIF; n = 53). We analyzed samples from

reductive mammoplasties and prophylactic mastectomies en-

compassing a broad spectrum of ages, parities, and germline

BRCA1/2 mutation statuses. Organoid modulation experiments

uncovered potential molecular regulation of several MEC sub-

types, thus demonstrating a feasible approach to illuminate

targetable changes in high-risk individuals’ breasts. Collectively,

this multi-omic, single-cell approach yields a breast atlas of cell

lineages and intra-lineage subtypes, uncovers altered MEC sub-

types associated with cancer risk factors, and enables signaling

pathway interrogation in cell subtypes in vitro. This multifaceted

approach may serve as a template for studying premalignant

changes in the breast and other tissues.

RESULTS

scRNA-seq and CyTOF identify breast epithelial and
stromal cell types
To generate a high-resolution portrait of breast cell types,

scRNA-seq and CyTOF were utilized to provide complementary
Figure 1. Major mammary epithelial and stromal cell types identified b

(A) Schematic of approach using scRNA-seq, CyTOF, CyCIF, and organoid cultu

(B) UMAPs of scRNA-seq breast cells colored by cell type (top) or EPCAM expre

sensing; BA, basal/myoepithelial) and three stromal types (Fibro, fibroblasts; Vas

(C) Canonical lineage marker expression in distinct MEC and stromal cell types f

(D) Heatmap of cell-type-specific markers for each cell type as identified by m

markers are highlighted. See Table S2.

(E) UMAPs of breast cells analyzed by CyTOF (top) and EPCAM expression (botto

(F) Canonical lineage marker expression in MEC and stromal cell types from CyT

(G) Matrix plot of lineage markers for each cell type in the CyTOF data.

See also Figure S1.
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views of cell diversity at the mRNA and protein levels (Figure 1A).

The scRNA-seq was performed on 52,681 cells from 16 breast

tissues, including tissues from noncarriers (n = 3) and carriers

of germline mutations in BRCA1 (n = 6), BRCA2 (n = 6), or

RAD51C (n = 1), spanning a range of ages (25–65) and parities

(Table S1). Cells were analyzed by unsupervised graph-based

clustering and visualized using Uniform Manifold Approximation

and Projection (UMAPs) (see STAR Methods) (Figure S1A).

MECs and stromal cells were distinguished by EPCAM expres-

sion (Figure 1B). Clusters were annotated as specific cell types

based on canonical marker expression of the three established

MEC lineages (AV, HS, and BA) and three stromal populations

(fibroblasts, vascular/lymphatic cells, and immune cells)

(Figures 1B and 1C). All cell types were detected in each sample,

although their proportions varied substantially (Figure S1B).

Gene expression signatures were generated for each cell type,

which can serve as a benchmark for future cell-type identifica-

tion and isolation (Figure 1D; Table S2).

Concurrently, CyTOF was performed on 38 breast tissues

(Table S1; ages 19–73, including noncarriers [n = 17] or carriers

of germline mutations in BRCA1 [n = 9], BRCA2 [n = 11], or

RAD51C [n = 1]), using our previously reported antibody panel

recognizing 40 breast development and tumorigenesis markers

(Rosenbluth et al., 2020) (Figures S1C and S1D). To identify ma-

jor cell types, the expression of these markers was quantified in

10,699,281 cells and visualized by UMAP for a subset of these

cells (n = 751,970) (see STAR Methods). CyTOF revealed the

same cell types as scRNA-seq (Figure 1E). EPCAM marked

luminal MECs, but little or no EPCAM protein was detectable in

BA cells despite their expression of low levels of EPCAM

mRNA (Figures 1B and 1E). Nevertheless, BA cells were clearly

distinct from stromal cells based on co-expression of BA lineage

markers (K14, K17, and CD10) (Figures 1F and 1G). Luminal cells

were further subdivided into the AV and HS types based on the

expression of key markers CD133 and ANXA8 (AV) or GATA3

andMUC1 (HS) (Figures 1F and 1G). Stromal cells were identified

by canonical markers for fibroblasts (CD140B and EGFR),

vascular/lymphatic cells (CD31 for endothelial cells and smooth

muscle actin [SMA] for pericytes), and immune cells (CD45)

(Figures 1F and 1G). Each major cell type was present in each

sample, albeit in considerably variable proportions (Figure S1E).

Cell-type proportions correlated between modalities for three

shared samples analyzed (Figure S1F).

scRNA-seq reveals diverse cell subtypes
The heterogeneity within each lineage was investigated by sub-

clustering of the scRNA-seq data of each major lineage (see

STARMethods) (Figure 2A). Among stromal cells, sub-clustering
y scRNA-seq and CyTOF

res.

ssion (bottom) (n = 16). Cells fell into three MEC (AV, alveolar; HS, hormone-

& Lymph, vascular and lymphatic cells; Im, immune cells).

rom scRNA-seq.

ulti-pairwise differential gene expression analysis of scRNA-seq data. Select

m) (n = 38). Three samples overlap with the scRNA-seq cohort. See Table S1.

OF data.



Figure 2. Diverse cell subtypes identified by scRNA-seq

(A) Sub-clustering identifies six MEC and 11 stromal subtypes. Minor subclusters (gray) were discarded as potential doublets due to unusually high gene counts

and aberrant marker expression.

(B) UMAPs of the subtypes within the AV (BL, AP), HS (HSa, HSb), and BA lineages (BAa, BAb). Gray cells are as in (A).

(C) MEC subtype proportions across 16 samples. Color code is identical to (B).

(D) Violin plots of MEC subtype marker expression.

(E) Heatmaps showing MEC subtype-specific gene expression signatures. See Table S2.

(F) Heatmaps of BL- (left) and AP-specific (right) gene signature expression across MEC subtypes, with BL signature showing substantial overlap with HS or BA

genes. Bar graph displays the relative proportion of genes within the BL or AP signatures unique to the subtype or shared with the other lineages.

(G) Violin plots showing example BA markers.

(H) Violin plots showing exemplar marker expression across the indicated cell types, demonstrating BL cells express pan-luminal and AV markers but not some

key HS and BA markers.

See also Figure S2.
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identified three fibroblast, three vascular/lymphatic, and five im-

mune subtypes whose proportions were highly heterogeneous

(Figures S2A–S2D). The fibroblast subtypes (F1–F3) were distin-

guished by high expression of (1) hormone receptors (HRs;

ESR1, androgen receptor [AR], PRLR, and LEPR) and cathepsin

proteases (CTSB/D/F), (2) tubulins (TUBB2A/B and TUBB6), and

(3) fibulins (FBLN2/5) and ductal branching regulator SPRY1 (Ko-

ledova et al., 2016) (Figures S2C and S2D). Vascular/lymphatic
cells included lymphatic endothelial cells (LYVE1, PDPN, and

PROX1), vascular endothelial cells (SOX17, PLVAP, and SELE),

and pericytes/smooth muscle cells (NOTCH3, ACTA2, and

RGS5) (Figures S2C and S2D) (Kalucka et al., 2020; Li et al.,

2020). Immune cells consisted of T cells (CD8+ or CD4+), myeloid

cells (FCGR3A, CSF2RA, and LYVE1), plasma cells (IGKC or

IGLC2/3/7), B cells, and natural killer cells (Figures S2C–S2E).

These results are consistent with known breast stroma
Developmental Cell 57, 1400–1420, June 6, 2022 1403
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composition (Polyak and Kalluri, 2010). Finally, differential gene

expression analyses provided systematically defined cell-sub-

type-specific signatures (Figure S2D; Table S2).

Although the three MEC types identified via scRNA-seq are

consistent with previous work (Henry et al., 2021; Nguyen et al.,

2018), sub-clustering performed on each MEC lineage revealed

less well-characterized subtypes (Figures 2B and 2C). Interest-

ingly, two AV subtypes, termed basal-luminal (BL) and AV pro-

genitor (AP) cells, were identified. Despite their overall AV pheno-

type (Figures 2AandS2F), BL cells, unlikeAPcells, co-expressed

intermediate levels of several BA (KRT5/14/17 andCAV1) andHS

markers (MUC1, SERPINA1, and AGR2/3) (Figures 2D–2G and

S2F; Table S2). Relative to AP cells, BL cells expressed high

levels of the progenitor gene ALDH1A3 (Colacino et al., 2018;

Eirew et al., 2012; Ginestier et al., 2007; Shehata et al., 2012)

and low levels of the AV maturity driver ELF5 (Chakrabarti et al.,

2012; Choi et al., 2009; Oakes et al., 2008) (Figures 2D and 2E).

Collectively, these patterns suggest the BL state reflects less

constrained transcriptional lineage fidelity within the AV lineage.

Such features are commonly observed in cancer but rarely in

normal tissues (Granit et al., 2018; Seldin and Macara, 2020),

raising important questions about the roles of BL cells in develop-

ment and tumor initiation. Of note, despite expressing several BA

andHSmarkers,BLcellswereclearly distinct from these lineages

by low/no expression of many canonical BA (ACTA2 andMYLK)

and HS genes (FOXA1 and AREG) and by expression of AV

markers (CD14 and FOLR1) (Figure 2H). As the BL expression

profilewasnot a simple linear combinationofAP,BA, andHSpro-

files (Figure 2F), BL cells were not multiplets but a bona fide AV

subtype. In contrast to BL cells, AP cells were characterized by

high lipid and protein biosynthesis regulator expression (Fig-

ure 2E; Table S2), suggesting amore committed AV state primed

for milk production (Bach et al., 2017).

Two subpopulations (HSa and HSb) within the HS lineage

were identified. Gene set enrichment analysis (GSEA),

comparing these subtypes, identified an estrogen-responsive

signature as the top distinguishing gene set (Table S2). The

HSa subtype expressed higher levels of estrogen receptor

(ER, encoded by ESR1), ER target genes (PDZK1, SERPINA1,

and SPDEF), and selective ER coactivator CITED1 (McBryan

et al., 2007; Yahata et al., 2001) (Figures 2D and 2E;

Table S2). HSb cells highly expressed canonical progesterone

receptor (PR) target genes (KCNK1, AKAP13, and WNT4) (Fig-

ure 2E; Table S2). Despite differential expression of PR target

genes, PGR (PR) mRNA levels were not strikingly different be-

tween subtypes (Table S2). Overall, these expression patterns

suggest HSa and HSb cells have more active ER and PR
Figure 3. Diverse cell subtypes identified by CyTOF and integrated wit

(A) UMAPs of CyTOF clusters of MECs (left) and expression of key AV, HS, and

(B) Example markers delineate distinct MEC subclusters.

(C) Matrix plot showing marker expression across MEC subclusters.

(D) Violin plots of protein levels of BA (K14, K17), pan-luminal (K8/18), and AV (C

(E) Heatmaps of MEC subtypes in four representative samples.

(F) Within-lineage distribution of cell subtypes across all samples.

(G) UMAPs of the integrated data colored by cell subtypes defined by scRNA-se

(H) Dot plot of MEC subtype association across modalities after intermodal label

centage of cells assigned to each integrated cluster.

(I) Matrix plots of CyTOFmarkers comparing average protein (top) andmRNA (bott

See also Figure S3.
signaling, respectively, likely reflecting changes in HS state in

response to hormone fluctuations.

Sub-clustering of BA cells identified two subtypes (BAa and

BAb) dominantly distinguished by immediate-early genes

(IEGs; FOS, JUN, EGR1, and IER2) (Figures 2D and 2E;

Table S2). Although the possibility that BA cells express IEGs

differentially in situ cannot be excluded, a tissue dissociation

stress response can produce such differential gene expression

among skeletal muscle cell subtypes (van den Brink et al.,

2017; van Velthoven et al., 2017), and BA cells are particularly

susceptible to alterations during dissociation (Engelbrecht

et al., 2021; Gao et al., 2016), potentially due to matrix detach-

ment stress (Debnath and Brugge, 2005). Of note, the BAa cells

also exhibited higher expression of contractility genes (OXTR,

MYL9, MYH11, and FSCN1) (Figure 2E; Table S2).

To eliminate this possible technical noise from the sub-clus-

tering, regression analysis was performed to remove gene

expression variation correlating with a 10-gene IEG signature

(see STARMethods). Re-clustering BA cells post-regression un-

covered three clusters (Figure S2G). Differential expression anal-

ysis revealed two BA clusters (BAP3 and BAP2) displayed higher

contractility gene levels (ACTG2,MYL9, andOXTR) (Figure S2H),

compared with a third (BAP1). BAP3 and BAP2 cells also ex-

pressed higher levels of cytokine and extracellular matrix genes,

respectively (Figure S2H).

The MEC subtypes described above illuminate important as-

pects of intra-lineage heterogeneity hitherto underappreciated

in breast scRNA-seq studies. To verify the robust generalizability

of this clustering scheme across datasets with varying sample

sizes and tissue processing protocols (Engelbrecht et al.,

2021; Gao et al., 2016; Hines et al., 2014), three published

scRNA-seq datasets (Hu et al., 2021; Pal et al., 2021; Twigger

et al., 2022) were scored with each subtype signature defined

in this study, and each cell subtype defined herein was indeed

identified in each study (Figures 2I and 2J).

CyTOF delineates complementary and contrasting MEC
heterogeneity
Sub-clustering was also performed on MECs within the CyTOF

dataset. MECs (n = 716,984) were identified in silico and then

clustered (see STAR Methods), which partitioned the cells into

10 clusters (Figure 3A). Clusters were annotated based on

knownmarker expression, again identifying HS, BA, and AV cells

(Figure 3A) and revealing subtypes within each (Figures 3B–3E).

Similarly to the major lineages, the subtypes showed widely

varying proportions across individuals (Figures 3E and 3F;

Data S1).
h scRNA-seq

BA markers (right).

D133) markers.

q (left) or CyTOF (right).

transfer from CyTOF to scRNA-seq data. Dot size and color represent the per-

om) expression. Plotted values aremean normalized and scaled. See Table S3.
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CyTOF revealed an AV population expressing K14 and K17 to

a level comparable to BA cells, thus mirroring the BL cells iden-

tified by scRNA-seq (Figures 3B–3D). These BL cells also specif-

ically expressed CD73, albeit in a small fraction of BL cells from

each donor, consistent with scRNA-seq (Figures 3E andS3A). As

CD73+ luminal MECs display multipotency in vitro (Roy et al.,

2013), the expression of this marker in BL cells suggests plas-

ticity in this population. In addition, CyTOF delineated further di-

versity within the AV lineage, including two BL subtypes (K14+

K17+/� BL1 and K14� K17+ BL2 cells) and four AP subtypes

(AP1–AP4; Figures 3B, 3C, and 3E). AP1 cells were distinguished

by high ANXA8 levels. AP2 cells highly expressed immunosur-

veillance-related markers such as HLA-A/B/C (MHC I proteins),

CD95 (FAS), and CD47 (Figure 3C). MHC I is upregulated in pro-

liferative cells in various tissues including the mammary gland

(Agudo et al., 2018); consistent with this, the AP2 cluster was

the most proliferative MEC subtype (Figure S3B). The AP2 clus-

ter also expressed the highest levels of receptor activator of NF-

kB (RANK) (Figure 3C), a key mediator of proliferation, differenti-

ation, and transformation in MECs in response to progesterone

(Cao et al., 2001; Fata et al., 2000; Mulac-Jericevic et al., 2003;

Schramek et al., 2010). The AP3/AP4 clusters were primarily

characterized by their low expression of the above markers,

with AP4 cells further distinguished by low K8/18 levels.

HS1 cells were differentiated fromHS2 cells by higher levels of

four HRs, chiefly PR-B but also ER, glucocorticoid receptor (GR),

and AR (Figures 3B, 3C, and 3E). This demarcation based on HR

levels contrasted with the transcriptomic clusters, which identi-

fied diversity centered on HR activity. Two BA subtypes were

also identified, with BA1 cells exhibiting high, tightly correlated

expression of K14 and K17, compared with BA2 cells

(Figures 3B, 3C, and S3C). The degree of correlation between

K14 and K17 in BA1 (but not in BL1) cells was unexpected, as

these type I acidic keratins do not heterodimerize (Moll et al.,

1982). Besides K14/17, BA1 cells exhibited slightly higher levels

of other BA markers (CD90, CD10, and SMA) (Figure 3C).

Next, the interrelatedness of the distinct cell subsets defined

independently by CyTOF and scRNA-seq was interrogated.

Two separate approaches (see STAR Methods) were used to

transfer CyTOF subtype labels to scRNA-seq cells and thereby

integrate the two modalities. Cells with concordant subtype as-

signments were selected for further analyses. This stringent

approach aligned the major cell types across the two modalities

with high accuracy (Figure S3D) and identified MECs in the

scRNA-seq closely resembling each CyTOF subtype

(Figures 3G and 3H). Examination of the CyTOF marker gene

equivalents confirmed that the mRNA and protein levels in

each integrated cluster closely mirrored one another

(Figures 3I and S3E). These results confirmed that whereas clus-

tering yielded finer or coarser groupings in each modality sepa-

rately, the axes of variation were concordant such that CyTOF la-

bels separated well onto cell profiles from scRNA-seq

(Figure 3G).

Following integration, differential gene expression analyses

andGSEAwere performed to determine the differences between

the integrated cell subtypes (Figure S3F; Table S3). These ana-

lyses reinforced many patterns suggested by CyTOF and identi-

fied transcriptional profiles/pathways associated with each clus-

ter. For example, BA1 cells were enriched for KRT14/17 and
1406 Developmental Cell 57, 1400–1420, June 6, 2022
contractility genes/gene sets, suggesting the K14hi K17hi BA1

cells identified by CyTOF encompass the contractile BA sub-

types identified by scRNA-seq. AP2 cells highly expressed

several immune-related genes (CD47, TAPBP, and CTSS). AP4

cells displayed a striking enrichment for ribosomal subunit genes

and depletion of mitochondrially encoded genes; such a pattern

resembles reported poised differentiation or activation states of

the hematopoietic system (Athanasiadis et al., 2017; Ricciardi

et al., 2018; Wolf et al., 2020). Compared with BL2 cells, BL1

cells expressed higher levels of BA genes (KRT14/5 and VIM),

lower levels of AV genes (ELF5, STAT5A, and MFGE8), and

higher levels of BL-unique genes (RARRES2, PTN, and kalli-

kreins), suggesting BL1 cells exhibit particularly high lineage in-

fidelity. SOX9, required to induce mixed BL gene expression in

normal and precancerous AV cells (Christin et al., 2020; Guo

et al., 2012), was also identified as a BL1 marker gene.

HS cells presented an intriguingly more complex portrait post-

integration (Figures 3G–3H), likely owing to their dynamic

responsiveness to hormone cycles, which may produce elabo-

rate, even discordant, mRNA-protein expression patterns (Cag-

net et al., 2018; Métivier et al., 2003; Murrow et al., 2020; Pascual

et al., 2020). HS1 cells highly expressed ESR1, ER-regulated

genes like PGR, and ER gene sets (Table S3), as predicted by

CyTOF. Cross-comparison of HSa/b and HS1/2 cells demon-

strated that cells overlapping between HSa and HS1 (HSa-1)

had the highest levels of ESR1, CITED1, and ER-regulated

genes, whereas HSb-2 had the lowest of these (Figure S3G;

Table S3). Interestingly, GATA3 showed the inverse pattern (Fig-

ure S3G), suggesting reciprocal regulation of ER and a key tran-

scriptional partner (Asselin-Labat et al., 2007). GATA3 blocks

ER-mediated transcription of HS specifier SPDEF (Buchwalter

et al., 2013), and accordingly, HSb-2 cells expressed the lowest

SPDEF levels (Table S3). HSb-1 cells expressed high levels of

PTHLH (Figure S3G), a fibroblast conditioner during hormone-in-

dependent murine embryonic mammogenesis (Hiremath and

Wysolmerski, 2013). Of note, PTHLH expression closely tracked

PR target genesWNT4 and TNFSF11 (Figure S3G) (Brisken et al.,

2000; Lee et al., 2013; Rajaram et al., 2015); future studies may

elucidate whether PTHLH is hormone-dependent in humans

and how this may have contributed to breast evolution, as other

PTHLH network components were subject to recent evolutionary

pressure affecting breast development (Grossman et al., 2010;

Kamberov et al., 2013; Sabeti et al., 2007; Southby et al.,

1990; Sugimoto et al., 1999; Voutilainen et al., 2012). Although

requiring further investigation, these analyses highlight the rich

intricacies of this lineage and the power of a multipronged

single-cell approach to untangle multilayered phenotypic

heterogeneity.

Together, these transcriptomic and mass cytometry data

delineated distinct MEC subtypes (Figure S3H) and markedly

expanded known cell-subtype heterogeneity of the breast.

Low levels of HS1 cells in older and BRCA2mut breast
tissue
Previous studies have demonstrated differences in MEC

states connected with BRCA1/2 status, age, and parity (Karaay-

vaz-Yildirim et al., 2020; LaBarge et al., 2016; Lim et al., 2009;

Slepicka et al., 2019), all of which are associated with breast can-

cer risk. Thus, the correlation of these variables with MEC



Figure 4. HS subtypes correlate with age and inherited BRCA2 mutation

(A) Dot plot showing CyTOF marker expression in the HS subtypes.

(B) HS1 abundance by age and genotype from CyTOF (n = 38). Age correlation was performed by simple regression; genotype association analysis, by one-way

ANOVA. Error bars represent mean ± SEM.

(C) Biaxial plots of ER/PR in HS cells from three donors of different ages.

(D) CyCIF quantification of HS1 cells in breast sections (n = 17). Top: the percent of (K19+ and/or ECAD+) ER+ PR+ HS1 cells out of total (K19+ and/or ECAD+) ER+

HS cells within ducts or lobules was plotted against donor age (left and middle) and in aggregate (right). Bottom: similar plots showing samples by genotype. Age

correlations and error bars are as in (B). Duct/lobule comparisons in aggregate or by genotype were analyzed by paired t test or two-way ANOVA with Bonferroni

correction, respectively.

(E) Representative CyCIF of HS1 cells (ER+ PR+; arrowheads) in a noncarrier and a BRCA2mut carrier. Scale bars, 50 mm.

See also Figure S4.
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types/subtype abundance was explored. These variables were

analyzed in the CyTOF dataset to take advantage of its larger

sample size and broader representation of ages, parities, and

genotypes (Table S1; Figure S3I). Whereas no differences in

the abundance of MEC lineages were identified based on these

variables (Figure S3J), several MEC subtypes clearly associated

with cancer risk factors.

Among HS subtypes (Figure 4A), a decrease in PRhi HS1

cells relative to PRlo HS2 cells was detected with increasing

age (Figures 4B and S4A). Biaxial plots of ER/PR for each sam-

ple further demonstrated a reduction in PR with age (Figure 4C).

This age effect dovetails with a known decrease in PR with age
(Yang et al., 2013), consistent with reduced estrogenic

signaling at menopause (Endogenous Hormones and Breast

Cancer Collaborative Group et al., 2011). Notably, BRCA2mut

carriers had fewer HS1 cells independent of age (Figure 4B).

Accordingly, PR was the most significant protein expression

difference between BRCA2mut noncarrier and carrier HS cells

(Figure S4B), even among premenopausal donors with no his-

tory of oophorectomy or chemotherapy (Figure S4C;

Table S1). Thus, the association with BRCA2 mutation could

not be explained by exogenous hormonal perturbations but

instead may be due to intrinsic biological differences in

BRCA2mut carriers.
Developmental Cell 57, 1400–1420, June 6, 2022 1407



Figure 5. BA subtypes exhibit altered proportion and localization with age
(A) Dot plot showing CyTOF markers expressed in BA subtypes.

(B) BA1 abundance by age and genotype from CyTOF data (n = 38). Age correlation was performed by simple regression.

(C) Biaxial plots of K14/K17 in BA cells of three donors of different ages.

(D) CyCIF quantification of BA1 proportion in breast sections. The percent of BA1 subtype (K14+ K17+ SMA+ and [K19� and/or ECAD�]) area out of total BA cell-

type (SMA+ and [K19� and/or ECAD�])) area within ducts (n = 30) or lobules (n = 30) was plotted against donor age (left and middle) and plotted in aggregate (n =

25) (right). Age correlations are as in (B). Duct versus lobule comparison was analyzed by paired t test. Error bars represent mean ± SEM (related to Figure S4H).

(E) Representative CyCIF of BA1 cells in the ducts and lobules of a young BRCA1/2mut noncarrier (age 23), showing preferential localization of BA1 cells (K14+

K17+; arrowheads) within the BA regions (SMA+) in ducts. Scale bars, 50 mm.

(F) Representative CyCIF of BA1 cells in the ducts of the same young donor shown in (E) compared with an older noncarrier, displaying increased abundance of

BA1 cells within the BA region in the older donor. Same markers and scale bars as in (E).

See also Figure S4.
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These associations were validated by CyCIF on 17 samples

confirmed to be histologically benign. Tissues were iteratively

stained for markers (Figure S4D) including ER, PR-B, E-cadherin

(ECAD), K19, and EPCAM and were segmented to obtain a total

of 11,659 ER+ HS cells (see STAR Methods). The percentage of

ER+ PR+ cells out of all ER+ cells was used to approximate the

HS1 cell fraction. These results confirmed that HS1 cell abun-

dance was lower in older persons and BRCA2mut carriers across

ages (Figures 4D, 4E, and S4E). In addition, HS1 cells were de-

tected in both ducts and lobules, with a significantly lower pro-

portion of HS1 cells in lobules of BRCA2mut tissues (Figure 4D).

Overall, these results highlight age-dependent changes within

the HS lineage and reveal an unexpected difference in the HS

cells of BRCA2mut carriers.

The BA1/BA2 ratio increases with age
Analysis of the BA clusters (Figure 5A) revealed that the ratio of

K14/K17hi BA1 cells to K14/K17lo BA2 cells increased with age

but not between genotypes (Figures 5B, S4F, and S4G). Biaxial
1408 Developmental Cell 57, 1400–1420, June 6, 2022
plots of BA cells also demonstrated a consistent increase in

the proportion of BA1 cells in older donors (Figure 5C).

This age association was validated via CyCIF on 30 breast tis-

sues. K14 is more highly expressed in BA cells of ducts versus

lobules (Santagata et al., 2014), and CyCIF indeed revealed

higher BA K14 and K17 expression in ducts (Figures 5D, 5E,

S4H, and S4I). Consistent with CyTOF, CyCIF showed the pro-

portion of K14hi K17hi BA1 cells increased with age (Figures 5D

and 5F). Interestingly, this age effect was detected in both struc-

ture types, suggesting the age accumulation of BA1 cells cannot

be explained entirely by a higher proportion of ductal relative to

lobular cells as a result of menopause-associated lobular atro-

phy. Therefore, these findings reveal a previously unappreciated

aspect of age-associated alterations in the BA lineage.

AV subtypes associated with parity, aging, and breast
tumor subtypes
The six CyTOF AV subtypes (AP1–AP4, BL1–BL2) (Figure 6A)

were assessed with respect to multiple clinical variables



Figure 6. AV subpopulations associated with age, parity, and breast cancer subtypes

(A) Dot plot of CyTOF marker expression in AV subtypes.

(B) BL1/2 abundance by age from CyTOF (n = 38). Age correlation was done by simple regression.

(C) Biaxial plots of K14/17 in AV cells (showing K14+ K17+/� BL1 and K14� K17+ BL2 cells) of three CyTOF samples from donors of different ages.

(D) CyCIF quantification of BL1 cells in breast sections. The percent of BL1 cells (K14+ and K19+ or ECAD+) out of total luminal cells (K19+ or ECAD+) within ducts

(n = 52) or lobules (n = 51) was plotted against donor age (left andmiddle) and plotted in aggregate for sections with sufficient representation of both structures (n =

51) (right). Age correlations were done by simple regression. Duct/lobule comparison was analyzed by paired t test. Error bars represent mean ± SEM (related to

Figure S5E).

(E) Representative examples of BL1 cells (K14+ K19+; arrowheads) in younger and older BRCA1mut noncarriers and carriers from CyCIF. Scale bars, 50 mm.

(F) Boxplots (left) showing associations between scRNA-seq signatures of AV cell type/subtypes and transcriptomic profiles of breast cancer subtypes in

METABRIC (basal-like, HER2+, and luminal A and B). Boxes represent the first, second (median), and third quartiles; whiskers span 1.53 interquartile range from

the first/third quartile. Aggregate and pairwise comparisons among tumor subtypes were analyzed by Kruskal-Wallis andWilcoxon rank-sum tests, respectively.

Heatmap (right) showing gene signature expression across cancer subtypes. Tumors were randomly downsampled to match the subtype with the smallest sam-

ple size (related to Figure S6A and Table S4).

See also Figures S5 and S6.
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(Figures S5A–S5D). For most subtypes, the analysis of parity ef-

fects was confounded by strong co-correlation with age. How-

ever, the relative proportion of ANXA8+ AP1 cells was signifi-

cantly higher in parous donors, and this pattern was the

opposite of that of age, suggesting independence from this var-

iable in this case (Figures S5B and S5C). ANXA8 marks quies-

cent AV cells in murine mammary glands after involution (Iglesias

et al., 2015), but its parity association in humans has not been

characterized. Interestingly, among the top genes specific to

AP1 cells (Figure S3F; Table S3) were several milk-related and

casein-cluster genes (CSN1S1, FDCSP, and PLIN2), whose

expression further highlights this cell subtype’s parity

association.

CyTOF identified a striking increase in the relative abundance

of BL subtypes with age, independent of BRCA1/2 genotype or

parity (Figures 6B, S5A, S5B, and S5D). Biaxial plots further

demonstrated enrichment of BL1/2 cells in older donors (Fig-

ure 6C). BL1 cells, which displayed a more pronounced increase

with age than BL2 cells, were analyzed by CyCIF on two inde-

pendent breast tissue collections, one local (31 samples yielding

159,393 K19+ and/or ECAD+ luminal cells) and one from the Ko-

men Tissue Bank (21 samples yielding 64,597 K19+ luminal

cells). An analysis of the combined set revealed K14+ BL1 cells

were localized primarily in ducts and increased in abundance

with age (Figures 6D, 6E, S5E, and S5F). Additional immunohis-

tochemistry (IHC) staining of 39 samples also detected K14+ BL1

cells in the luminal layer of ducts in mammary terminal ductal

lobular units (TDLUs) and showed that the fraction of TDLUs con-

taining BL cells increased with age (Figure S5G), consistent with

the CyTOF and CyCIF analyses.

The age-dependent accumulation of BL cells and their hybrid

gene expression evocative of low lineage fidelity suggested

changes in the AV differentiation state in older women who

face an elevated breast cancer risk. To interrogate the connec-

tion between BL cells and breast cancer, tumors from the

METABRIC (Curtis et al., 2012) were scored with respect to

gene signatures stringently filtered to include only genes most

unique to each cell type/subtype (see STAR Methods;

Table S4). The BL-unique signature most strongly associated

with basal-like breast cancers (Figures 6F and S6A). A similar

pattern was observed for a pan-AV signature, whereas an AP

signature scored more highly in HER2 tumors. Interestingly,

GSEA also identified several basal breast cancer gene sets en-

riched in BL cells (Figure S6B; Table S2), further underscoring

the similarity of BL cells to basal-like breast cancer. By contrast,
Figure 7. Organoids as a model system to identify signaling pathway d

(A) UMAP of CyTOF on organoid cultures of normal breast tissues (noncarriers =

were projected onto the clusters defined in the primary tissue UMAP (Figure 3A)

(B) UMAPs colored by expression of the indicated markers associated with MEC

(C) CyTOF matrix plots showing marker expression of each cell subtype in organ

(D) Proportion of MEC subtypes grown in full or altered media with removal of ea

(E) Relative proportion of BL1 cells in organoids cultured without the indicated m

(F) Flow cytometry analysis of BL1 cells (K14+ EPCAMhi CD49Fhi) as a fraction of to

(rTGF-b1) or vehicle control (t test). Error bars are as in (E).

(G) TGF-b pathway-related GSEA gene sets enriched in the scRNA-seq BL signa

(H) Enrichment score of transcription factors (TFs) with significant overlap (p adj.

datasets and the BL signature. Only TFs with detectable expression (>10%) in B

scored dataset is shown (related to Figure S7J and Table S2).

See also Figure S7.
HS signatures, irrespective of subtype, tightly associated with

luminal A/B tumors (Figures S6A and S6C), and BA signatures

correlated poorly with every tumor subtype (Figures S6A and

S6D). These results support that basal-like breast cancer origi-

nates in AV cells (Bach et al., 2021; Gusterson et al., 2005;

Molyneux et al., 2010; Smart et al., 2011) and demonstrate that

BL-specific genes (LIF, RARRES1, and FXYD5) are more highly

expressed in basal-like tumors.

Organoid cultures preserveMECsubtypes for functional
interrogation in vitro

Mammary organoid cultures preserve the major MEC types

in vitro, and depleting specific growth factors and signaling in-

hibitors from the organoid medium alters the relative proportion

of lineages in culture (Rosenbluth et al., 2020). Here, the degree

to which cell subtypes were maintained in organoid culture was

assessed by comparing organoids with primary tissue using

CyTOF (see STAR Methods). All MEC subtypes were retained

in vitro, albeit to varying degrees (Figure 7A), and organoids

maintained unique features of the primary tissue MEC subtypes.

For example, BA1 cells maintained highly correlated K14 and

K17 expression (Figure S7A). Moreover, confocal microscopy

detected EPCAM and K14 co-expression in acinar organoids,

demonstrating BL cell preservation (Figure S7B). However, orga-

noids had lower PR expression than fresh tissues, with conse-

quently low percentages of HS1 cells (Figures 7A and 7B). Orga-

noid medium lacks estrogens, and its component phenol red

bears only mild estrogenic bioactivity (Welshons et al., 1988).

Thus, cultures may lack sufficient ER signaling to induce robust

PR expression. Additionally, progesterone (present in medium

component B27 supplement) downregulates PR expression (Da-

vaadelger et al., 2019), so low PR levels may thus be the result of

continuous, rather than cyclic, exposure of MECs to progester-

one in vitro. Nevertheless, marker expression patterns in orga-

noid subtypes closely mirrored primary tissues overall

(Figure 7C).

The effects of medium components on MEC subtypes were

investigated by generating a series of organoid media, which

each lacked one component, that was used to establish a set

of organoids derived from the same tissue for CyTOF analysis

(see STAR Methods). Data from six new sets and three previ-

ously published ones (Rosenbluth et al., 2020) were used to

assess the proportions of cell subtypes under different media

conditions (Figures 7D and S7C–S7E). To infer potential direct/

indirect effects of these factors, the expression levels of genes
ependencies in cell subtypes

4, BRCA1mut carriers = 3, BRCA2mut carriers = 2). Cells from organoid cultures

based on similar protein expression.

subtypes.

oids (left) and primary tissues (right; duplicate of Figure 3C).

ch of the indicated components. Mean of 9 cultures is shown.

edia components. Student’s t test. Error bars represent mean ± SEM.

tal AV cells (EPCAMhi CD49Fhi) in organoids cultured with recombinant TGF-b1

ture. Heatmap shows BL markers associated with the TGF-b gene sets.

< 0.05) between their putative target genes curated from published ChIP-seq

L cells are shown. For TFs with multiple enriched ChIP datasets, the highest-
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targeted by these factors (Figure S7F) and changes in prolifera-

tion in cell subtypes under these conditions (Figure S7G) were

analyzed.

Removal of individual medium components shifted the distri-

bution of MEC subtypes (Figures 7D, S7C, and S7E). For

example, without EGF, both HS subtypes became more promi-

nent (Figures 7D and S7E), likely reflecting an indirect effect of

their growth advantage over EGF-dependent AV and BA cells

(Ciarloni et al., 2007; Mallepell et al., 2006), which expressed

higher EGFR levels than HS cells (Figures 7C and S7F) and prolif-

erated less overall in the absence of EGF (Figure S7G). By

contrast, HS cells expressed higher levels of HER2, ERBB3,

and ERBB4 (Figures 7C and S7F), and commensurate with

this, HS2 (and to a lesser extent HS1) decreased in relative abun-

dance and proliferation in cultures missing heregulin b1

(Figures 7D, S7E, and S7G), a growth factor that binds ERBB3/

4 and thereby activates HER2 (Carraway et al., 1994; Plowman

et al., 1993). Among BA cells, BA2 cells decreased in the

absence of endogenous BMP inhibitor noggin. That BA2 cells

displayed a decrease in proliferation (Figure S7G) and expressed

BMPR2 (Figure S7F) are consistent with a direct inhibitory effect

of BMP signaling on this subtype (Zabala et al., 2020).

Removal of TGF-bRI inhibitor or FGF7/10 significantly

increased the percentage of BL cells (Figures 7D, 7E, and

S7E), suggesting inverse regulation of BL cells by TGF-b and

FGF signaling. BL2 cells also became more abundant upon

removal of noggin, reinforcing the notion that TGF-b family

signaling regulates BL abundance (Figures 7D and S7E). These

increases showed inter-individual heterogeneity (Figure 7E),

likely due to variable amounts of TGF-b and FGF family members

available in culture (potentially from other cell types or the base-

ment membrane extract lots utilized); however, the regulation of

BL cells by TGF-b signaling was confirmed by treating organoids

with recombinant TGF-b1, which increased the fraction of K14+

BL1 cells within the AV lineage (Figure 7F). Furthermore, BL1

cells cultured without TGF-bRI inhibitor expressed higher levels

of BL markers (K17, GAL1, and ANPEP) (Figure S7H), further

supporting a direct role for TGF-bRI in regulating the BL pheno-

type rather than a proportional increase due to the reduction of

other subtypes.

Consistent with these results, GSEA of the scRNA-seq BL

signature identified an enrichment of TGF-b pathway activation

gene sets (Figure 7G; Table S2). In addition, assessment of

TGF-bRI signaling mediators showed increased expression of

SMAD3 (and to a lesser extent SMAD2) in BL cells relative to

AP cells (Figure S7I), and BL cells expressed the type II receptor

TGFBR2 and low levels of type I receptors TGFBR1 andACVR1B

(Figures S7F and S7I). Considering the pleiotropic role of TGF-b

signaling in regulating MEC and breast cancer plasticity (Moses

and Barcellos-Hoff, 2011) and the mixed-lineage BL phenotype,

the BL signature was evaluated with respect to a ChIP-seq

signature database to identify other transcription factors (TFs)

possibly active in BL cells (see STAR Methods). This analysis

identified nine TFs (e.g., RELA, JUN, KLF4, ATF3, andCTCF) be-

sides SMAD2/3 with significant overlap between their target

genes and the BL signature (Figure 7H; Table S2) and with

detectable expression in BL cells (Figure S7J). Many of these

TFs enhance MEC and/or breast cancer stem/progenitor activity

(Gu et al., 2021; Guo et al., 2006; Lin et al., 2015; Nishi et al.,
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2014; Richter et al., 2013; Sau et al., 2016), and ATF3 and

CTCF are genetically altered in breast cancer (Curtis et al.,

2012; Koboldt et al., 2012). AP-1, NF-kB, and KLF4 also modu-

late the activity, expression, and pro-survival effects of TGF-b in

breast cells (Kwok et al., 2009; Luo, 2017; Tiwari et al., 2013; Yin

et al., 2008, 2010). Of note, ATF3 and inflammatory/NF-kB gene

sets are specifically enriched in BL1 versus BL2 cells (Table S3).

Although intriguing, further work is needed to verify the role of

these TFs in BL cell state maintenance or induction.

Collectively, the studies described herein demonstrate a

feasible approach to identify factors regulating cell subtypes

by integrating scRNA-seq, mass cytometry, histology, and orga-

noid cultures.

DISCUSSION

Our high-resolution portrait of the breast demonstrates that all

three MEC lineages contain multiple subtypes distinguished by

specific markers, gene signatures, microanatomical localiza-

tions, and sensitivity to growth factor or signaling modulation.

Our analyses surveyed tissues encompassing multiple ages,

parity and menopause statuses, and cancer-relevant genotypes

to comprehensively capture the landscape of distinct cell identi-

ties at both the transcriptomic and proteomic levels, providing a

generalizable classification of cell subtypes. We also provide ev-

idence that several MEC subtypes are altered in association with

breast cancer risk modulators such as age, BRCA2 mutation,

and parity. Finally, we demonstrated organoid cultures can be

used to identify factors that differentially regulate MEC subtype

proportions. Overall, these findings advance our understanding

of breast intra-lineage heterogeneity beyond previous profiles

of major cell lineages (Hu et al., 2021; Knapp et al., 2017) or

limited cell subtypes (Bhat-Nakshatri et al., 2021; Henry et al.,

2021) through our parallel multi-omic approach and broad

coverage of clinical variables.

A key contribution of our breast taxonomy is the identification

of greater AV diversity than previously appreciated, particularly

the robust identification of BL cells across platforms. Although

K14+ luminal breast cells have been observed previously (Arendt

et al., 2014; Nagle et al., 1986; Wetzels et al., 1991), we provide

herein a multifaceted molecular and spatial characterization of

these cells. We showBL cells are an AV subset that accumulates

predominantly in ducts with age, expresses a subset of BA and

HS genes/markers, and thereby displays less restricted lineage

fidelity. The properties of BL cells imply increased plasticity,

which requires future functional verification. However, CD73+,

ALDH1A3+, and TDLU-localized K14+K19+ MECs (all BL sub-

sets) possess higher in vitro plasticity/clonogenicity (Colacino

et al., 2018; Roy et al., 2013; Villadsen et al., 2007). Interestingly,

genetic manipulation of AV differentiation determinants

(Tnfrsf11a, Elf5, and Atp6v0a2, and Notch regulators Pofut1

and Rbpsuh) often results in the accumulation of luminal cells

with basal features (Buono et al., 2006; Chakrabarti et al.,

2012; Cordero et al., 2016; Pamarthy et al., 2016; Pellegrini

et al., 2013), thus suggesting the age accumulation of BL cells

in humans may be a consequence of altered AV differentiation

cues. Notably though, luminal K14+ MECs are evident in human

infants (Anbazhagan et al., 1998), and even our youngest donor

tissues (age 19) contained BL cells. Determining the provenance
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and physiology of BL cells will be imperative to uncovering the

basis for their age accumulation and potential roles in pathology.

Similarly to BL cells, basal-like breast cancers display mixed-

lineage features (Badve et al., 2011; Granit et al., 2018; Prat and

Perou, 2011) but are luminal in putative origin and overall molec-

ular features (Gusterson, 2009; Santagata and Ince, 2014).

Mixed keratin expression is also commonly observed in luminal

cells in response to oncogenic insult, even prior to overt transfor-

mation (Christin et al., 2020; Koren et al., 2015; Rios et al., 2019;

Shakya et al., 2008; Van Keymeulen et al., 2015). As attenuated

lineage fidelity is a key property associated with transformation

(Ge and Fuchs, 2018) and BL cells share molecular similarities

with basal-like breast cancer, these cells represent an important

population to study with respect to tumor initiation.

Among AP cells, ANXA8+ AP1 cells are of interest due to their

parity association. In mice, ANXA8 directly induces quiescent

differentiation in post-involution AV cells (Iglesias et al., 2015).

That AP1 cells may represent a ‘‘memory’’ of parity is under-

scored by their expression of casein-cluster genes, which

display sustained hypomethylation and expression into murine

primiparity (Bach et al., 2017; Dos Santos et al., 2015). This mo-

lecular imprint may facilitate the more rapid and high-output lac-

togenesis of multiparous mammals (Ingram et al., 2001, 1999;

Lang et al., 2012; Zuppa et al., 1988). The presence of AP1 cells

may be a useful biomarker for studying insufficient human lacta-

tion (Farah et al., 2021), and the highly differentiated nature of

AP1 cells alongside the largely protective effects of parity against

breast cancer (Slepicka et al., 2019) also raises the question of

whether AP1 cells resist transformation.

The most proliferative MEC subtype in our CyTOF data is the

RANKhi AP2 cells. Their highly proliferative status supports the

notion they may be particularly susceptible to malignant trans-

formation (Gonzalez-Suarez et al., 2010; Schramek et al.,

2010). Whereas AP2 cells resemble reported proliferative

RANK+ luminal cells enriched in BRCA1mut carriers (Nolan

et al., 2016), AP2 cells were not associated with BRCA1 geno-

type in our study. Differences in cohorts, methods, and cell-

type definitions employed may have influenced genotype asso-

ciations. A further intriguing aspect of AP2 cells is their high

expression of immunosurveillance-related genes/markers. AV

subsets may moonlight as surveillants of mastitis-inducing path-

ogens (Kendrick et al., 2008), and proliferative MECs are more

susceptible to immune clearance (Agudo et al., 2018). The

possible relationships among RANK, immunosurveillance, and

AP proliferation warrant future investigation, especially in the

context of tumorigenesis (Gómez-Aleza et al., 2020).

The identification of PRhi HS1 and PRlo HS2 cells via CyTOF is

potentially relevant to breast cancer risk.We found that HS1 cells

are less common in older donors (likely due to hormone changes)

and BRCA2mut carriers. The complexity and controversy sur-

rounding the role of progestogens in breast cancer initiation

and maintenance (Brisken, 2013, 2014; Carroll et al., 2017;

Muti, 2014) extend to the PR expression status of BRCA1/2mut

breast tissue (King et al., 2004; Mote et al., 2004). However,

the pro-differentiation hormonal milieus of gestation and breast-

feeding seemingly afford less protection against breast and

ovarian cancer for BRCA2mut carriers versus noncarriers or

BRCA1mut carriers (Eoh et al., 2021; Jernström et al., 1999; Kot-

sopoulos et al., 2012; Milne et al., 2010; Pan et al., 2014; Terry
et al., 2018; Tryggvadottir et al., 2003). Progesterone signaling

inhibition has been proposed as a prevention strategy for familial

breast cancer based onmurine studies ofBrca1-mediated triple-

negative tumorigenesis (Gonzalez-Suarez et al., 2010; Lee et al.,

2021; Nolan et al., 2017, 2016; Poole et al., 2006; Schramek

et al., 2010) and on epidemiological studies combining

BRCA1/2mut carriers (Hickey, 2013; Widschwendter et al.,

2015, 2013), but our data suggest the role of progesterone in

breast tumorigenesis may vary by specific genotype. As ER+

breast tumors (typically PRlo/� luminal B tumors) predominate

over triple-negative tumors in BRCA2mut but not BRCA1mut car-

riers (Ha et al., 2017; Larsen et al., 2013; Sorlie et al., 2003), it is

critical to clarify the roles of HS2 cells and progesterone in

BRCA2-associated tumorigenesis.

BA subpopulations exhibit distinct transcriptomic and protein

heterogeneity. The scRNA-seq uncovered three BA subtypes

distinguished by genes associated with contractility, cytokines,

and matrix production. By contrast, CyTOF revealed two BA

subtypes consisting of K14hi ductal and K14lo lobular BA cells

(Santagata et al., 2014). Integration of the two modalities linked

the more contractile BA subtypes identified by scRNA-seq to

BA1 cells. Furthermore, we found BA1 cells accumulate within

both ducts and lobules with age, suggesting BA cells undergo

age-dependent differentiation state changes beyond the effects

of lobular atrophy. Throughout human mammogenesis, BA cells

in newly formed breast structures display low/no K14/17 expres-

sion, reminiscent of BA2 cells (Anbazhagan et al., 1998; Wetzels

et al., 1991); thus, the greater prevalence of BA1 cells with age

may signify enhanced myoepithelial differentiation in extant

structures concurrent with declining production of new struc-

tures with age. The decline in organoid BA2 cells in the absence

of EGF and noggin supports this hypothesis, as EGF and BMP

signaling cascades stimulate and suppress production of new

mammary structures, respectively (Ciarloni et al., 2007; Zabala

et al., 2020). The contractile signature of BA1 cells also suggests

a role of parity (which itself correlates with age) in promoting the

BA1 phenotype. Future studies may focus on age-related regu-

lators of BA differentiation and their effects on BA cell tumor sup-

pression (Polyak and Hu, 2005).

Our CyTOF dataset of organoids provides a wealth of informa-

tion on cell-subtype distribution and marker expression in

response to different growth factors and signaling stimuli. The in-

fluenceofTGF-bonBLcells inorganoidculture isparticularlynote-

worthy, as the TGF-b pathway is a vital regulator of mammary

development, plasticity, and tumorigenesis (Moses and Barcel-

los-Hoff, 2011). Various other molecular pathways, such as Wnt

and EGF, also affected MEC subtype balance in vitro and are

crucial mediators of mammary differentiation and disease (Hynes

andWatson, 2010; Yu et al., 2016). These results and the hypoth-

eses they prompt demonstrate the power of combining multiple

single-cell techniques with small-scale organoid screening, an

approach generalizable to studies of other tissues/cancers.

Limitations of the study
Although we discerned some significant correlations herein,

confounding variables precluded definitive assessments of

others. In many cases, we could not distinguish the effects of

age, menopause, surgery type, and genotype. For example,

whereas we associate BL cells with aging, others have
Developmental Cell 57, 1400–1420, June 6, 2022 1413
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connected BL-like phenotypes withBRCA1/2 status (Proia et al.,

2011; Shalabi et al., 2021). Our data suggest a trend toward

higher abundance of BL cells in BRCA1/2mut carriers (Fig-

ure S5A), but the much more profound contribution of age pre-

cluded a conclusive evaluation of genotype. Definitively untan-

gling the effects of age and genotype has proven formidable

absent multi-institutional efforts to assemble larger datasets.

Other relevant covariates, such as surgery type and prior chemo-

therapy (Wang et al., 2019; Wu et al., 2016), further compound

the complexity of the challenge. Such issues have rendered a

consensus on the genotype effects on the breast elusive (King

et al., 2004; Lim et al., 2009; Mote et al., 2004; Pal et al., 2021).

More highly powered observational studies and/or carefully

controlled perturbation experiments will be required to parse

the independent effects of these intricate, interdependent vari-

ables on the breast and the interactions among them.

Finally, although we elucidated common themes across plat-

forms and highlighted the complexity of mRNA/protein differ-

ences, our studies were performed in parallel and therefore

could not confirm RNA and protein co-expression. Even though

in silico integration enriched our MEC annotations, technological

advances will ideally enable the simultaneous, high-throughput,

single-cell detection of RNA and protein in multiple cell compart-

ments (Chung et al., 2021; Stoeckius et al., 2017).

Collectively, our study serves as a benchmark for integrating

transcriptomic and mass cytometric analyses to uncover novel,

physiologically relevant lineage subtypes in normal and cancer-

prone tissues, paving a path for future multi-omic investigations

to chart a comprehensive atlas of human tissues.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

ANPEP (151Eu, CyTOF) Biolegend Cat#301701;

RRID: AB_314177

ANXA8 (161Dy, CyTOF) R&D Systems Cat#AF8105;

RRID: n/a

CD133 (173Yb, CyTOF) Miltenyi Biotec Cat#130-108-062;

RRID: AB_2660891

CD73 (170Er, CyTOF) Biolegend Cat#344002;

RRID: AB_2154067

RANK (175Lu, CyTOF) Amgen Cat#N-1H8;

RRID: n/a

AR (143Nd, CyTOF) Cell Signaling Technology Cat#5153;

RRID: AB_10691711

ERa (172Yb, CyTOF) Cell Signaling Technology Cat#13258;

RRID: AB_2632959

PRb (164Dy, CyTOF) Cell Signaling Technology Cat#3157;

RRID: AB_2252606

GATA3 (141Pr, CyTOF) Miltenyi Biotec Cat#130-108-061;

RRID: AB_2651829

MUC1 (149Sm, CyTOF) Biolegend Cat#355602;

RRID: AB_2561642

HSP27 (153Eu, CyTOF) DSHB Cat#CPTC-HSPB1-3;

RRID: AB_2617269

CD10 (163Dy, CyTOF) Biolegend Cat#312202;

RRID: AB_314913

CD90 (152Sm, CyTOF) Biolegend Cat#328101;

RRID: AB_940390

K14 (144Nd, CyTOF) R&D Systems Cat#MAB3164;

RRID: AB_2265623

K17 (166Er, CyTOF) Cell Signaling Technology Cat#12509;

RRID: AB_2797939

LAM5 (162Dy, CyTOF) DSHB Cat#P3H9;

RRID: AB_2619590

SMA (160Gd, CyTOF) eBioscience Cat#14-9760-80;

RRID: AB_2572995

CD24 (158Gd, CyTOF) Biolegend Cat#311102;

RRID: AB_314851

EPCAM (150Nd, CyTOF) Biolegend Cat#324202;

RRID: AB_756076

HER2 (176Yb, CyTOF) Cell Signaling Technology Cat#2165;

RRID: AB_10692490

K8/18 (145Nd, CyTOF) DSHB Cat#TROMA-I;

RRID: AB_531826

CD49F (155Gd, CyTOF) Biolegend Cat#313602;

RRID: AB_345296

EGFR (147Sm, CyTOF) Biolegend Cat#352901;

RRID: AB_10916396

KI67 (146Nd, CyTOF) Miltenyi Biotec Cat#130-108-060;

RRID: AB_2652564

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

p53 (165Ho, CyTOF) Cell Signaling Technology Cat#2524;

RRID: AB_331743

BRCA1 (169Tm, CyTOF) Abcam Cat# ab16780;

RRID: AB_2259338

HLA-A/B/C (167Er, CyTOF) Biolegend Cat#311402;

RRID: AB_314871

H3K27me3 (175Lu, CyTOF) Cell Signaling Technology Cat#9733;

RRID: AB_2616029

CD47 (209Bi, CyTOF) Fluidigm Cat#3209004B;

RRID: n/a

CD54 (142Nd, CyTOF) Biolegend Cat#353101;

RRID: AB_11204422

CD95 (168Er, CyTOF) Miltenyi Biotec Cat#130-108-066;

RRID: AB_2660559

GAL1 (171Yb, CyTOF) R&D Systems Cat#AF1152;

RRID: AB_2136626

GR (156Gd, CyTOF) Cell Signaling Technology Cat#3660;

RRID: AB_11179215

CD45 (089Y, CyTOF) Fluidigm Cat#3089003B;

RRID: AB_2661851

EPCR (148Nd, CyTOF) Biolegend Cat#351902;

RRID: AB_10895923

CD140B (154Sm, CyTOF) Cell Signaling Technology Cat#4564;

RRID: AB_2236927

VIM (174Yb, CyTOF) Cell Signaling Technology Cat#5741;

RRID: AB_10695459

CD31 (113In, CyTOF) Biolegend Cat#303102;

RRID: AB_314328

CD44 (115In, CyTOF) Biolegend Cat#103001;

RRID: AB_312952

Cleaved PARP1 (159Tb, CyTOF) eBioscience Cat#14-6668-80;

RRID: AB_10667889

K14 (FITC, CyCIF) Abcam Cat#ab77684;RRID: AB_2265437

K19 (AF555, CyCIF) Abcam Cat#ab203444;

RRID: AB_2857974

K17 (AF647, CyCIF) Abcam Cat#ab196199;

RRID: AB_2868588

E-cadherin (AF594, CyCIF) Cell Signaling Technology Cat#7687;

RRID: AB_2797633

SMA (AF555, CyCIF) Abcam Cat#ab202509;

RRID: AB_2868435

PRb (AF488, CyCIF) Abcam Cat#ab199224;

RRID: AB_2728808

ERa (AF647, CyCIF) Cell Signaling Technology Cat#57761;

RRID: AB_2799533

EPCAM (AF488, CyCIF) Cell Signaling Technology Cat#5198;

RRID: AB_10692105

K14 (IHC) BioLegend Cat#905301;

RRID: AB_2565048

Critical Commercial Assays

Chromium Single Cell 3’ Assay 10x Genomics N/A

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

scRNA-seq data This study GEO: GSE180878; SRA: SRP329970;

Broad Institute Single Cell Portal:

Study identifier: SCP1731; Synapse Sage

Bionetworks: https://doi.org/10.7303/

syn26560310

CyTOF primary tissue raw data This study Mendeley Data:

https://data.mendeley.com/datasets/

pcftzv8w63/1

CyTOF primary tissue processed data This study Mendeley Data:

https://data.mendeley.com/datasets/

vs8m5gkyfn/1

CyTOF organoid data This study Mendeley Data:

https://data.mendeley.com/datasets/

f2v94hj7jm/1

scRNA-seq data Hu et al., 2021 Data obtained via personal communication

with Hu et al.

scRNA-seq data Pal et al., 2021 GEO: GSE161529

scRNA-seq data Twigger et al., 2022 Array Express:

E-MTAB-9841

Software and Algorithms

R (v3.5.1, 4.0.1) R project RRID: SCR_001905

Cell Ranger (v3) 10x Genomics RRID:SCR_017344

Seurat (v3, v4) Butler et al., 2018; Stuart et al., 2019 RRID:SCR_016341

edgeR (v3.24.3) Robinson et al., 2010 RRID:SCR_012802

fgsea (v 1.8.0) http://doi.org/10.18129/B9.bioc.fgsea RRID:SCR_020938

Python (v3.8) Python Software Foundation RRID:SCR_008394

FlowJo v10 BD Biosciences RRID:SCR_008520

MATLAB (v 2020b) Mathworks RRID:SCR_001622

Ilastik Rashid et al., 2019 RRID:SCR_015246

Prism (v9) Graphpad software RRID:SCR_002798
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to the Lead Contact, Joan Brugge (joan_brugge@

hms.harvard.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
Raw and processed scRNA-seq data are deposited at the Sequence Read Archive (SRA: SRP329970) and Gene Expression

Omnibus (GEO: GSE180878), respectively. The scRNA-seq data are also available at the Single Cell Portal with the study identifier

SCP1731 and Synapse Sage Bionetworks: https://doi.org/10.7303/syn26560310. CyTOF data are deposited at Mendeley Data (pri-

mary tissue raw data, Mendeley Data: https://doi.org/10.17632/pcftzv8w63.1; primary tissue processed data, Mendeley Data:

https://doi.org/10.17632/vs8m5gkyfn.1; organoid data, Mendeley Data: https://doi.org/10.17632/f2v94hj7jm.1). Scripts for compu-

tational analyses are available as Data S2.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human mammary tissues
All donor samples are listed in Table S1. Specimenswere obtained fromBrigham&Women’s Hospital or Faulkner Hospital on the day

of surgery, processed to single cells and analyzed by scRNA-seq on the same day, fixed and frozen as single cells for subsequent
Developmental Cell 57, 1400–1420.e1–e7, June 6, 2022 e3
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CyTOF analysis, or used to generate organoid cultures or formalin-fixed, paraffin-embedded (FFPE) sections. The scRNA-seq

dataset contains 16 samples total, including 4 elective reduction mammoplasties (3 non-mutation carriers and 1 carrying

RAD51C mutation) and 12 prophylactic mastectomies (6 carrying BRCA1 mutations and 6 carrying BRCA2 mutations), spanning

a range of 25-65 years of age. The CyTOF dataset contains 38 donors total, including noncarrier (n=17), BRCA1 (n=9), BRCA2

(n=11), and RAD51C (n=1) mutations, spanning a range of 19-73 years of age. The CyCIF dataset contains 53 samples total, pooling

from the Brigham and Faulkner hospitals (n=32) and from the Komen Tissue Bank (n=21), including noncarrier (n=27), BRCA1 (n=15),

and BRCA2 (n=11), spanning a range of 19-69 years of age. This study was reviewed by the Harvard Medical School Institutional

Review Board and deemed not human subjects research. Donors gave their informed consent to have their anonymized tissues

used for scientific research purposes. Whole-exome or targeted sequencing was performed on most noncarrier tissues used in

scRNA-seq and CyTOF analyses to confirm the absence of germline mutations in common cancer predisposition genes.

METHOD DETAILS

Tissue dissociation
Cells were then pelleted by centrifugation, further dissociated by sequentially pipetting with 10, 5, and 1-ml pipette tips, and recen-

trifuged. The resulting cell pellet was used directly to establish organoid culture as previously described (Rosenbluth et al., 2020) or

further dissociated into single cells for scRNA-seq or CyTOF analysis. For scRNA-seq, cells were treated for 5 minutes with TrypLE

(Gibco 12605010), filtered through a 40 mm strainer, resuspended in PBS containing 0.04%BSA, counted manually under the micro-

scope, and loaded onto the 10X Chromium platform immediately. For CyTOF, cells were subjected to red blood cell lysis (Biolegend

420301), a 5-minute treatment with Trypsin (Corning 25053CI), and a 5-minute treatment with 5U/ml dispase (StemCell Technologies

07913) and 0.1 mg/ml DNase (Fisher Scientific NC0208431). Cells were then filtered through a 40 mm strainer, resuspended in PBS,

counted manually under the microscope, and used for CyTOF staining/fixation.

scRNA-SEQ SAMPLE PREPARATION

A total of 7,000-8,000 viable cells per sample were loaded for single cell capturing and cDNA library generation using the 10X Chro-

mium 3’ library construction kit v2 following the manufacturer’s instructions (including 3 washes to minimize ambient RNA). Libraries

were sequenced by Illumina HiSeq X Ten. Paired-end readswere processed andmapped to theGRCh38-3.0.0 human genome using

Cell Ranger v3.0.

Filtering eliminated genes detected in <20 cells, and discarded cells with (1) UMI counts < 1,000, (2) gene counts < 500 or > 8,000,

and (3) mitochondrial gene ratio > 10%, resulting in the detection of 20,437 genes in 52,681 cells (see Table S5) across a total of 16

samples, with a median of approximately 3,000 cells from each sample. A median of 1,756 genes and 6,116 transcripts were

captured per cell.

The filtered data were then analyzed using Seurat v3 (Butler et al., 2018; Stuart et al., 2019). Briefly, raw counts were normalized

with the SCTransform function with multiple regression variables, including nCount_RNA, percent.mt, S.Score, and G2M.Score.

Cells were then clustered using K-nearest neighbor (KNN) graphs and the Louvain algorithm using the first 50 dimensions from prin-

cipal component analysis. Clustered cells were visualized by UMAP embedding using the default settings in Seurat. Major cell type

populations were identified using canonical gene markers. Cell type-specific gene expression signatures for each major population

were derived by identifying genes that consistently exhibited expression levels >1.3-fold higher (with FDR < 0.05) than each of the

other cell types in multiple pairwise differential expression analyses using edgeR (Robinson et al., 2010). Prior to edgeR, the Seurat

FindMarkers function was applied to select features detected in >10% of either cell population in the comparison. To adjust for base-

line differences between individuals, all differential analyses were performed with sample donor as a blocking variable. To further

identify subpopulations within eachmajor population, EPCAM+ epithelial clusters and EPCAM– stromal clusters were first subsetted,

renormalized, and reclustered. Subsequently each major cell type population was reidentified within the epithelial or stromal subset

using canonical markers and was then further individually subsetted, renormalized, and subclustered. In some cases, minor subclus-

ters present in only one or two donors out of 16 were merged with a neighboring subcluster in order to ensure that all subpopulations

were generalizable, accounting forR10% of cells within the major cell type in at least 3 donors orR2% of cells in at least 8 donors.

Anyminor subclusters with unusually high gene counts (>5,000) and aberrant marker expression were excluded as potential doublets

for all downstream analyses. Subpopulation-specific gene expression signatures within each major population were derived using

the same pairwise edgeR analysis approach above. All heatmaps for visualizing marker gene expression were median-centered

and down-sampled to 100 cells per cell type. Gene set enrichment analysis (GSEA) (Liberzon et al., 2015; Subramanian et al.,

2005) was performed on the edgeR-derived cell subtype signatures using the fgsea package and MSigDB v7 collection with FDR

cutoff at 0.1. In Figure S2F, gene sets of AV, HS, and BAmarkers were derived from the respective cell type-specific signatures listed

in Table S2.

For reanalysis of published scRNA-seq datasets, raw data were obtained from three published human scRNA-seq studies

(Hu et al., 2021; Pal et al., 2021; Twigger et al., 2022). Samples from total normal mammary tissue were reanalyzed using the

same methodology described above, except cell subclusters were not merged due to limited sample sizes in some studies. For

Hu et al., analysis was limited to a single sample per donor by selecting samples harvested from the contralateral side of cancer

occurrence. Analysis was performed using R v4.0.1, Seurat v4.1.0, and ComplexHeatmap v2.4.3.
e4 Developmental Cell 57, 1400–1420.e1–e7, June 6, 2022
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Each tissue was minced using razor blades and digested in a solution containing DMEM/F12 (Gibco 11330), 2 mM GlutaMax

(Gibco 35050), 10 mM HEPES (Gibco 15630), 50 U/mL Penicillin-Streptomycin (Gibco 15070), and 1 mg/ml collagenase XI (Sigma

C9407). Tissue digestion was performed at 37�C with constant shaking at 150 rpm, either for 2 hours (for organoids and scRNA-

seq) or 2-4 hours (for CyTOF).

For regression analysis of immediate early genes (IEGs), the addModuleScore function in Seurat v3 was applied to the epithelial

cells using the top 10 genes differentially expressed between BAa and BAb cells, all of which are IEGs and aremore highly expressed

in BAa compared to BAb (FOS, JUNB, ZFP36, SOCS3, JUN, EGR1, DUSP1, FOSB, BTG2, IER2). Raw counts were renormalized as

described above except that the IEG module score was added to the list of variables to regress. Subclustering analysis of the post-

regression data was performed as described above.

The association of AV, HS, and BA cell type/subtype signatures with breast cancer subtypes was analyzed using tumor microarray

data fromMETABRIC (Molecular Taxonomy of Breast Cancer International Consortium) (Curtis et al., 2012). More stringently refined

versions of the signatures for each cell type/subtype described above were derived for each group (see Table S4). Pan-AV

signature was defined as genes more highly expressed in AV cells than HS cells and BA cells (FC > 1.5, FDR <0.05), excluding genes

differentially expressed between HS and BA cells, and excluding genes differentially expressed between the two AV subtypes. Simi-

larly, pan-HS signature was defined as genes more highly expressed in HS cells than AV and BA cells, not differentially expressed

between AV and BA, or between the HS subtypes. Pan-BA signature was defined as genesmore highly expressed in BA cells relative

to AV and HS but not differentially expressed between AV and HS or between the BA subtypes post-IEG-regression. For cell sub-

types, the BL-enriched signature was defined as genes more highly expressed in BL cells relative to AP cells (FC > 1.5, FDR

<0.05) and not differentially expressed between AP cells and HS or BA cells. A similar approach was applied to generate the other

subtype-specific signatures for the AP, HSa, HSb subtypes, as well as for the IEG-regressed BAP1, BAP2, and BAP3 subtypes. The

resulting filtered BAP1-enriched signature contained too few genes andwas therefore discarded. Signatures are available in Table S4.

Signature scores were defined as the difference between the average expression of genes in the target signature and a randomly

sampled control gene set with equivalent expression distribution, as described by (Nguyen et al., 2018). For all other cell type/subtype

signatures, correlation score was calculated for each gene signature mapping to the transcriptomic profiles of breast cancer sub-

types (basal-like, HER2+, Luminal A, and Luminal B), with p-values calculated using the Kruskal-Wallis test (for aggregate compar-

ison) and Wilcoxon rank sum tests (pairwise comparisons). Tumor molecular subtype designations were from (Milioli et al., 2016).

Enrichr ChEA analysis (Kuleshov et al., 2016) was performed using the Independent Enrichment AnalysisAppyter on the BL signa-

ture, the background set of genes detected in >10%of BL or AP cells, and theChEA_2016 library. The resulting enriched transcription

factors were filtered for expression in at least 10% of BL cells.

CyTOF SAMPLE PREPARATION

CyTOF antibody validation and sample preparation was performed as previously described (Rosenbluth et al., 2020). In brief, up to

twenty samples at a time were barcoded using the Cell-ID 20-Plex Pd Barcoding Kit (Fluidigm 201060) and then pooled together.

These pooled cells were then stained with an extracellular antigen antibody cocktail for 30 min at room temperature and washed

twice with Cell-Staining Medium (Fluidigm 201068). They were then permeabilized with 90% ice-cold methanol on ice for 30minutes,

washed three times with CSM, and subsequently stained with an intracellular antigen antibody cocktail for 30 min at room temper-

ature. The cells were subsequently washed twice with CSMand then fixed for 30min with 4%PFA (EMS 15710) at room temperature.

The sample was then stained with the iridium DNA intercalator (Fluidigm 201192A) overnight according to manufacturer’s instruc-

tions. The following day, the sample was thenwashed twicewithMilli-Qwater, resuspended in beadwater (1:10 4-Element EQBeads

[Fluidigm 201078] in Milli-Q water), and run on the Helios Mass Cytometer.

CyTOF DATA ANALYSIS

After acquisition of CyTOF data, the data were normalized to the bead signal, converted to an FCS format, and then debarcoded

using the CyTOF Software v7 from Fluidigm, thus yielding one file per sample. These samples then underwent quality control

hand-gating in Flowjo (v10). Samples were gated on Event Length, Gaussian parameters, 140Ce-Beads, DNA Content (191Ir and

193Ir), and viability stain (195Pt). This gating yielded live single cells, which were then imported into the single-cell analysis platform

Scanpy (Wolf et al., 2018). Samples were transformed using the arcsinh transform and downsampled to no more than 20,000 cells

per donor.

Analyses of the primary breast tissue were performed in four batches. One batch displayed poor quality staining in all samples and

was excluded from downstream analyses. The remaining three batches (n=38 donors; n=50 samples; see Tables S1 and S5) were

batch-corrected using the Combat algorithm native to Scanpy and were thereafter analyzed together. The data were embedded as a

UMAP using the intersection of all antibodies used in all three experiments. The resulting UMAP was then subjected to Leiden clus-

tering (Traag et al., 2019). Clusters with fewer than 10,000 cells were typically strongly sample-driven and were excluded based on

this and their relative rarity. The remaining clusters were used for all downstream analyses. During the analysis of the cluster markers,

it was noted that certain antibody channels caused spillover in predicted patterns which created false signal in some circumstances.

Notably, K17 created spillover in HLA, and K14 created spillover in K8/18, GATA3, and SMA. Compensation was not feasible at the

time the experiments were performed, but these technical artefacts were disregarded during the interpretation of the data.
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In order to analyze epithelial cells specifically, each sample was embedded as a t-distributed stochastic neighbor embedding (t-

SNE) in FlowJo, and epithelial cells were isolated by hand-gating. Subsequently, no more than 20,000 cells per donor were imported,

and the collective data were analyzed in the same manner as the combined epithelial and stromal data described above.

The organoid samples were stained as described above and subjected to the same quality controls. Remnant non-epithelial cells

were removed by embedding each batch of organoids as UMAPs and removing non-epithelial clusters from the data frame. All re-

maining high-quality epithelial cells (see Table S5) were projected onto the primary breast tissue epithelial UMAP using the Ingest

algorithm from Scanpy. This approach allowed the organoid samples to be analyzed directly with respect to the primary samples.

INTEGRATION OF CyTOF AND scRNA-SEQ DATA

In order to integrate the CyTOF and scRNA-seq data, the names of CyTOF markers used for clustering were converted to their gene

symbol equivalent. Multi-antigen markers K8/18 and HLA-A/B/C were converted to KRT18 and HLA-A, respectively, because

those genes most closely mirrored the distribution of the protein data when compared to KRT8 and HLA-B/C. CyTOF data were

also converted from arcsinh to log1p space. Subsequently, two methods were utilized to transfer CyTOF cluster labels to the

non-regressed scRNA-seq data. In the first, utilizing Scanpy, the MAGIC imputation algorithm (t=4) (van Dijk et al., 2018) was applied

to the scRNA-seq data, the Combat algorithmwas applied to both datasets, and then Ingest was used to transfer the cluster labels. In

the second, the bindSC algorithm (Dou et al., 2020) was applied to the non-imputed sequencing data. Both datasets were normalized

and scaled in Seurat v4, with thematrix X set as the protein matrix, Y as the scRNA-seqmatrix of 3,000 highly variable genes, Z as the

scRNA-seq matrix containing only the protein-homologous genes, a as 0.1, and l as 0.7. Only those cells with matching cluster des-

ignations (n=14,947) were used for the integration results. No doublets were included in the integration analysis. Differential gene

expression analyses andGSEAwere performed as described above using the original, non-imputed scRNA-seq data without regres-

sion of immediate-early genes.

CyCIF TISSUE STAINING

FFPE tissue sections were subjected to multiplex immunofluorescence staining (CyCIF) as previously described (Lin et al., 2018).

Briefly, tissue sections were pre-processed using the automated Leica BOND RX instrument before blocking with Intercept (PBS)

Blocking Buffer (Li-Cor Cat# 927-70001) for 1 hr at room temperature. Slides were incubated with fluorophore-conjugated primary

antibodies overnight, stained with Hoechst 33342 (1 mg/ml) and imaged to determine background fluorescence. Bleaching between

cycles was accomplished by incubating slides in a PBS-based solution containing 4.5% H2O2 and 30 mM NaOH in the presence of

tabletop LED lights for 1 hr at room temperature. After fluorophore inactivation, slides were washed in 1x PBS and subjected to the

following cycle of antibody staining. The following antibodies were used: K14 (FITC; Abcam ab77684, RRID:AB_2265437), K19

(AF555; Abcam ab203444, RRID:AB_2857974), K17 (AF647; Abcam ab196199, RRID:AB_2868588), E-cadherin (AF594; Cell

Signaling Technology 7687, RRID:AB_2797633), SMA (AF555; Abcam ab202509, RRID:AB_2868435), PRb (AF488; Abcam

ab199224, RRID:AB_2728808), ERa (AF647; Cell Signaling Technology 57761, RRID:AB_2799533), and EPCAM (AF488; Cell

Signaling Technology 5198, RRID:AB_10692105). Imaging was performed using the CyteFinder slide scanning fluorescence micro-

scope (RareCyte, Seattle, WA).

CyCIF DATA ANALYSIS

Raw images were stitched, and the multiple cycles were registered to generate an OMETIFF file using ASHLAR (https://github.com/

labsyspharm/ashlar). Visual inspection determined which samples had extensive cell loss or tissue damage and had to be excluded

from analysis. Epithelial structures were manually extracted using the ROI Manager in ImageJ. Areas of tissue that were damaged,

poorly stained, out of focus, or contained debris were not extracted and thus were excluded from further analysis. Subsequently,

segmentation was performed using the object classifier Ilastik (ilastik.org) as described previously (Rashid et al., 2019) with some

modifications. Approximately three random 250x250 pixel images were sampled from each ROI to construct a training set using

MATLAB (version 2020b). These images were inputted into Ilastik, and pixels were assigned as nuclear, cytoplasmic, or background.

Once training was complete, Ilastik was used to assign a probability of each pixel in the ROIs to the three object classes defined.

Based on these probability masks, a watershed transformation was performed to identify single nuclei using custom MATLAB

scripts. Cytoplasmic area was determined by dilating the nuclear mask. Markers restricted to either the nucleus or cytoplasm

were used to check segmentation quality by inspecting ks-density plots of those markers in both compartments to confirm enrich-

ment in the correct cellular compartment. Additionally, cytoplasmic and nuclear mask images were overlayed onto the original

Hoechst image to qualitatively confirm successful segmentation.

Before quantifying single cells, over- and under-segmented nuclei were removed by applying nuclear perimeter cutoffs based

on visual inspection (<10 and >=30 pixels). Exclusion of the lowest 5% of Hoechst signal removed out-of-focus nuclei. Thresholds

for markers were set based on intensity distribution across cells in each ROI and a visual comparison of the immunofluorescence

image with a centroid graph labeling positive and negative cells in the ROI. Once thresholds were established, cell populations

defined by specific marker combinations were counted for each ROI, and the ROIs were aggregated for each sample to yield

a percentage for each population in ducts and lobules in each tissue section. The above approach was used for analysis of
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AV cells and HS cells. However, because the BA cell population did not segment well using the above approach due to their

morphology, an ImageJ script was instead applied to calculate the percentage of K14+ K17+ SMA+ and (K19– and/or ECAD–)

area out of SMA+ and (K19– and/or ECAD–) area for each ROI and then aggregated the ROIs to determine a single percentage

for all ducts and lobules per sample.

IHC TISSUE STAINING

FFPE tissue sections (n=39) were stained with antibody against K14 (BioLegend 905301, RRID:AB_2565048) at 1:2000 overnight,

then probed with biotinylated anti-rabbit secondary antibody (Vector Labs BA-1000) and avidin/biotin peroxidase (Vector Labs

PK-6100), and visualized by 3,30-Diaminobenzidine (DAB, Sigma D4418). The brown stain was allowed to develop without over-satu-

ration, such that any difference in low versus high signal intensity was discernable. On average, 13 (range 5-44) terminal ducts in

TDLUs per patient were scored for K14+ BL1 cells in the luminal layer by a breast pathologist in a blinded fashion.

ORGANOID CULTURES

Organoids were cultured as previously described (Rosenbluth et al., 2020). In growth factor perturbation experiments, one of the

following components was removed from the culture medium: the TGFbRI inhibitor A83-01, B27 supplement, EGF, FGF7/10, Here-

gulin b1, Noggin, R-spondin 1, or the p38 MAPK inhibitor SB202190. Data from three previously published organoid cultures (Rose-

nbluth et al., 2020) were re-analyzed and results were combinedwith six additional organoid cultures that were newly generated. One

culture (ORG82) was only grown in a subset of the different media formulations (full medium, -EGF, -B27 supplement, and -TGFbRI

inhibitor) due to insufficient tissue. Where indicated, 20 ng/mL recombinant TGFb (Peprotech) were added to the culture medium for

14 days. Flow cytometry analysis and confocal microscopy of immunostained organoid cultures were performed as previously

described (Rosenbluth et al., 2020).

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical details in this study, including the statistical tests and number of samples used, are listed in the figure legends. Unless

otherwise specified, group comparisons were performed using t-test when two groups were compared, and one-way or two-way

ANOVA when three or more groups were compared. Age correlations were analyzed by simple regression. Statistical analyses

were performed by using the GraphPad Prism software or R. All bar graphs represent mean +/- SEM. All p-values were denoted

as * for p% 0.05, ** for p% 0.01, *** for p% 0.001, and **** for p% 0.0001. For all statistical analyses and unless otherwise specified,

p-values < 0.05 were deemed significant.

ADDITIONAL RESOURCES

scRNA-seq data: https://singlecell.broadinstitute.org/single_cell (Study identifier: SCP1731); https://doi.org/10.7303/syn265603

10CyTOF primary - --- tissue raw data: https://data.mendeley.com/ (https://doi.org/10.17632/pcftzv8w63.1)

CyTOF primary tissue processed data: https://data.mendeley.com/ (https://doi.org/10.17632/vs8m5gkyfn.1)

CyTOF organoid data: https://data.mendeley.com/ (https://doi.org/10.17632/f2v94hj7jm.1).
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