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SUMMARY
Single-cell RNA sequencing (scRNA-seq) is an evolving technology used to elucidate the cellular architecture
of adult organs. Previous scRNA-seq on breast tissue utilized reduction mammoplasty samples, which are
often histologically abnormal. We report a rapid tissue collection/processing protocol to perform scRNA-
seq of breast biopsies of healthy women and identify 23 breast epithelial cell clusters. Putative cell-of-origin
signatures derived from these clusters are applied to analyze transcriptomes of ~3,000 breast cancers. Gene
signatures derived frommature luminal cell clusters are enriched in ~68%of breast cancers, whereas a signa-
ture from a luminal progenitor cluster is enriched in ~20% of breast cancers. Overexpression of luminal pro-
genitor cluster-derived signatures in HER2+, but not in other subtypes, is associated with unfavorable
outcome. We identify TBX3 and PDK4 as genes co-expressed with estrogen receptor (ER) in the normal
breasts, and their expression analyses in >550 breast cancers enable prognostically relevant subclassifi-
cation of ER+ breast cancers.
INTRODUCTION

Breast cancers are subclassified into multiple subtypes based

on gene expression analyses and genomic aberrations.1,2

Among these classifications, intrinsic subtype classification

based on gene expression, which classifies breast cancer into

luminal-A, luminal-B, HER2+, basal, normal-like, and claudin-

low, is suggested to reflect cell of origin of breast cancer.3

Flow-cytometry-based marker profiling and gene expression

portraits have identified three major epithelial cell types in the

breast, including basal/stem (CD49f+/EpCAM�), luminal pro-

genitors (CD49f+/EpCAM+), and mature luminal (CD49f�/Ep-

CAM+) cells.4,5 Cell-type enriched transcription factor networks,

such as TP63/NFIB, ELF5/EHF, and FOXA1/ESR1, control gene

expression patterns in basal/stem, luminal progenitor, and

mature luminal cells, respectively.6 It is suggested that, although

the claudin-low subtype of breast cancers originates from basal/

stem cells, luminal progenitors are the source of basal-like breast

cancers.5,7,8 Although HER2+ breast cancers may originate from

luminal progenitors and mature luminal cells, luminal-A/B breast
Cell Re
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cancers likely originate frommature luminal cells.3 However, it is

acknowledged that heterogeneity exists within basal/stem,

luminal progenitors, and mature luminal cells as defined by

CD49f/EpCAM cell surface marker profiling.9,10

A recent integrative analysis of 10,000 tumors from 33 types of

cancer emphasized the dominant role of cell-of-origin patterns in

cancers.11 Because normal tissue itself is composed of multiple

cell types, finemapping of these cell types and identifying poten-

tial cancer-vulnerable cell populations in normal tissues would

aid in characterization of organ-specific cell of origin of cancers.

However, experimentally validating the cell of origin is technically

challenging.12 Recent advances in single-cell techniques,

including single-cell RNA sequencing (scRNA-seq), scEpige-

netics, scDNA-seq, and scProteomics-atlas, are enabling further

refinement of cell types within normal and diseased tissues.13

For example, using reduction mammoplasty samples and cells

flow sorted based on CD49f/EpCAM, Nguyen et al.14 identified

three epithelial cell types in the normal breasts. Using the

same technique and mouse mammary tissues at different devel-

opmental stages, Pal et al.15 described seven epithelial cell types
ports Medicine 2, 100219, March 16, 2021 ª 2021 The Author(s). 1
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in the mouse mammary gland. However, Bach et al.16 observed

15 epithelial cell types in the mouse mammary gland. A concern

has been raised about the reproducibility of data, which is likely

influenced by the types of tissues used, duration between tissue

collection and sequencing, and dissociation protocols.13

Although these issues can be standardized for studies involving

mouse tissues, standardizing is difficult for studies that utilize hu-

man tissues collected after a surgical procedure. In this regard,

Lim et al.13 recently proposed the need to establish a rapid tissue

dissociation program to advance single cell technology for clin-

ical applications.

A decade ago, our institution established a normal breast tis-

sue bank where healthy women donate breast biopsies for

research purposes. This resource has enabled others and us

to demonstrate clear differences between our ‘‘normal’’ and

both reduction mammoplasty and tumor-adjacent normal tis-

sues, which have been the most common sources of ‘‘normal

controls’’ for breast cancer studies in the literature, including

the single-cell transcriptome studies. We and others demon-

strated clear histologic andmolecular abnormalities in these sur-

rogate sources of normal breast tissue.17–19 For example, only

12% of reduction mammoplasty samples were histologically

normal compared to 65% of breast tissues in our tissue

collection.19

In this study, we first performed scRNA-seq of five freshly

collected samples that included 18,704 cells and 20,647 genes.

Results were analyzed at both single sample levels as well as in

an integrative manner. To confirm the results of first sequencing,

we repeated integrated single-cell analyses of five new cryopre-

served samples covering 7,582 cells and 25,842 genes. Using

the expression patterns of CD49f and EpCAM as well as basal/

stem, luminal progenitor, and mature luminal cell transcription

factor networks, we performed refined analyses of epithelial

cells. Epithelial-cluster-specific gene signatures were then

applied on The Cancer Genome Atlas (TCGA) and Molecular

Taxonomy of Breast Cancer International Consortium (META-

BRIC) datasets to determine the impact of putative ‘‘cell of

origin’’ on breast cancer outcomes.2,20 Because there is limited

subclassification of estrogen receptor positive (ER+) breast can-

cers and it is difficult to characterize ER+ breast epithelial cells

from the normal breasts to identify genes co-expressed with

ER in normal and tumor cells,21 we performed additional studies

on TBX3 and PDK4, two genes that are co-expressed at different

levels in ER+ clusters of the normal breasts.

RESULTS

Establishment of rapid tissue procurement and single-
cell analyses protocol
Although the primary intention of establishing the Susan G. Ko-

men Tissue Bank (KTB) at IU Simon Cancer Center was to pro-

vide a source of healthy breast tissue to be used as normal con-

trols for research, we took advantage of the easily accessible

tissue collection procedure in clinic rather than collecting tissue

in the operating room, so as to limit time between tissue collec-

tion and utilization of tissues for research that is typically associ-

ated with collection during surgical procedures. Because these

‘‘collection events’’ have 1:2 donor:volunteer ratio, we were
2 Cell Reports Medicine 2, 100219, March 16, 2021
abundantly staffed and able to reduce time from tissue collection

to placement in media or cold ischemia time (for cryopreserva-

tion) to ~6 min. All tissues used have undergone histologic char-

acterization and are free of abnormalities. Because specimen

cellularity varied between individuals, 50% of fresh or cryopre-

served tissues provided high-quality data with respect to num-

ber of viable cells and minimal ambient RNA contamination of

single-cell data. Table S1 provides information about donors.

Nine samples were from white women, one was from an Asian

woman, and one was from an African American woman. Genetic

ancestry mapping has been performed using 41-SNP genetic

ancestry informative markers. Two out of 11 women were nullip-

arous, and two out of 11 were post-menopausal. Five donors

had a family history of breast cancer. Based on Tyrer-Cuzick

risk scores,22 only three donors had increased lifetime risk of

developing breast cancer (>20%; Table S1).

Epithelial cell clusters of the normal breasts
Unlike the previous studies, which purified breast epithelial cells

using CD49f/EpCAM markers prior to single-cell analyses,14 we

subjected single cells after dissociation directly to RNA

sequencing and then used CD49f/EpCAM as well as transcrip-

tional regulators known to specify basal/stem, luminal progeni-

tors, and mature luminal cells to subcluster epithelial cells.6 Uni-

form manifold approximation and projection (UMAP) plot of

combined samples is shown in Figure 1A. As expected, the

normal breasts contained a variety of cell types in addition to

epithelial cells, including monocytes, T cells, NK cells, endothe-

lial cells, and fibroblast-like cells (Figure 1A). Fibroblast-like and

endothelial cells displayed three closely related clusters, sug-

gesting heterogeneity within these cells. Heterogeneity in endo-

thelial cells, driven largely by metabolic plasticity, has been pre-

viously described in other organs and disease conditions.23

Similarly, functionally heterogeneous fibroblasts in the normal

breast have been described.24

Epithelial cell types were dominant. Using CD49f/EpCAM

expression pattern as well as TP63/NFIB, ELF5/EHF, and

FOXA1/ESR1 as functional markers of basal/stem, luminal pro-

genitors, and mature luminal cells, we performed subcluster an-

alyses of epithelial cells, which revealed 13 different epithelial

cells (Figures 1B and 1C). Number of cells in each cluster and

average expression value of genes that differentiated these clus-

ters are shown in Table S2. A heatmap of average expression

levels of top marker genes of these clusters is shown in Fig-

ure 1D. CD49f+/EpCAM� basal/stem cells contained three

closely related subclusters (clusters 5, 7, and 9). Each of these

clusters within basal/stem cells can be distinguished through

expression of specific genes. For example, cluster 5 expressed

higher levels of NDUFA4L2, a mitochondrial NADPH dehydroge-

nase (Figure 2A). This cluster also expressed higher levels of

CD36, a lipid transporter associated with breast cancer metas-

tasis, as well as Vimentin, a marker of basal cells.15,25 Cluster 7

expressed ACKR1, a decoy receptor for CCL2 and interleukin-

8 (IL-8).26 Cluster 9 is enriched for MECOM (EVI1), a stem-cell-

associated transcription factor.27

CD49f+/EpCAM+ cells contained two clusters that appeared

as a continuum of cells (clusters 0 and 2) and five other well-

separated clusters (clusters 6, 8, and 10–12). Although cluster
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0 and 2 appeared as a continuum of cells, significant differ-

ences in gene expression are evident (Figures 1D and 2B).

For example, although all luminal progenitor cells expressed

secreted fizzled related protein 1 (SFRP1), a modulator of Wnt

signaling,28 genes such as SLP1, ANXA1, RARRES1, KLK5,

and KRT15 were enriched in cluster 2. KRT14 and KRT17

expression was enriched in cluster 2, but not in cluster 0. Clus-

ter 6 was enriched for CXCL14 and ACTA2. Cluster 8 was en-

riched for SCGB2A1 and CALML5. Cluster 10 was KRT14 pos-

itive and enriched for the expression of GLYATL2. Cluster 11

was enriched for the expression of multiple genes, including

TOP2A, NUSAP1, UBE2C, TPX2, SPC25, MKI67, CDK1,

CENPF, and CCNA2 (Figures 1D and 2B). In fact, this cluster

displayed a higher number of genes that are differentially ex-

pressed than other clusters and constituted a major signaling

network associated with regulation of cell cycle, chromosome

segregation, and spindle checkpoint, to name a few (Table

S2). Cluster 12 was characterized by elevated expression of

MEG3, IGF1, and PTGDS.

CD49f�/EpCAM+mature luminal cells were composed of three

clusters, which appeared as a continuum of cells (clusters 1, 3,

and 4), although there were distinct differences in gene expres-

sion. All three of these clusters expressed ESR1 and pioneering

factors FOXA1 and GATA3.29 TBX3 and PDK4 are two other

genes that showed variable expression in these clusters. XBP1

and STC2, ESR1 target genes,30 were uniformly expressed at

higher levels in all three of these clusters (Figure 3A). In fact, while

the expression level of SFRP1was able to distinguish luminal pro-

genitors frommature luminal cells, expression levels of XBP1 and

STC2 were able to distinguish mature luminal cells from luminal

progenitors. Cluster 1 showed enrichment of RUNX1 and BATF.

Cluster 3 was enriched forANKRD30A, whereas cluster 4 was en-

riched for PIP, MUCL1, TAT, and TSPAN8.

ER signaling plays a significant role in the development of the

breast as well as breast cancer.31 We first did hierarchical clus-

tering and pathway analysis of cluster-enriched genes and found

that clusters 1, 3, and 4 were enriched for genes in ER signaling.

Hierarchical clustering data from a representative sample that

displayed ESR1 transcripts are shown in Figure 3B, and various

cell types present in the breast of this donor are shown in Fig-

ure 3C. Clusters 1, 3, and 4 expressed ESR1 transcripts. In the

integrated analysis of all samples, these three clusters ex-

pressed the highest levels of known ER regulators FOXA1,

GATA3, and TBX3 as well as lesser known PDK4 (Table S2).

Co-expression of ESR1, GATA3, TBX3, and PDK4 is evident in

this sample (Figure 3B). Thus, there are three closely related

clusters of estradiol-responsive breast epithelial cells.

The distribution pattern of epithelial clusters in the individual

samples is shown in Figure S1A, and number of cells per cluster

is indicated in Table S2. Almost every sample contained similar

levels of most of the clusters; two minor clusters, clusters 11

and 12, showed inter-sample variability.
Figure 1. The normal breast contains 13 epithelial clusters

(A) Integrated analysis of single cells of the normal breast biopsies of five healthy

(B) Subclustering of epithelial cell types using CD49f/EpCAM as well as NFIB, TP

(C) Representation of various cell types in each sample. Subclusters in individua

(D) Hierarchical clustering of top cluster-enriched genes.
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Reproducibility of cluster analyses
To determine whether epithelial clusters identified in the above

analyses can be reproduced using cryopreserved tissues from

healthy donors, we isolated cells from five cryopreserved tis-

sues, pooled cells, and analyzed them all together. Because

five samples were combined, there were enough cells to divide

samples into two and perform cDNA synthesis and library prep-

aration by two independent labs. In addition, we used the latest

version of the library preparation from 10X Genomics with

improved chemistry, paired-end sequencing, and better effi-

ciency. Because pooled samples contained more lymphocytes,

lymphocyte-related cells were removed from the analyses.

Without lymphocyte removal, there were 28 clusters (Table

S2). Side-by-side comparisons of the second set of pooled sam-

ples and re-analyses of first five samples are shown in Figure 4A.

Re-analyses of individual samples are shown in Figure S1B, and

number of cells in each cluster is shown in Table S2. With

increased number of cells and more genes sequenced, further

subclassification of epithelial cells became possible. Because

the number of clusters identified in this new clustering are

different (23) from the first analysis (13), new clusters are named

with prefix N (N0–N22). The cluster defining gene lists showing

fold differences (value in cluster/value in all other clusters com-

bined) and p values are provided in Table S3.

Consistent with our earlier report and a recent report on orga-

noid-derived single-cell data, there were inter-individual differ-

ences in the proportion of cells in each cluster.17,21 The UMAP

cell embeddings and cell cluster information generated from

Seurat analysis were imported into 10X Genomics Loupe

Browser. By checking the expression of various genes with the

Loupe Browser, we first assigned the subdivided clusters into

basal/stem, luminal progenitor, and luminal mature cells. Based

on CD49f and EpCAM expression patterns (Figure 4B), clusters

N5–7, N11, N13, N18, and N22 were basal; N3, N4, N9, N14,

N16, N19, and N20 were luminal progenitors; and N2, N8, N12,

and N17 were mature luminal cells. ALDH1A3 expression, which

has been suggested to identify breast cancer stem cells,32 was

expressed mainly in N4, N14, and N16 clusters of luminal pro-

genitor cells (Figure 4B). Among genes that define basal/stem,

luminal progenitor, and luminal mature cells, as expected,

CD117 (KIT) expression was restricted to luminal progenitor

cells,5 whereas ESR1 and FOXA1 expression was restricted to

luminal mature cell clusters (Figure S2). Although ESR1 expres-

sion was widespread across mature luminal subclusters, with

cluster 12 displaying stronger signals, the expression of its target

gene PGRwasmuchmore restricted within mature luminal cells,

suggesting the natural existence of ER+/PR+ and ER+/PR�
cells, similar to the features of luminal A and luminal B breast

cancers.33 Expression of the best-studied ER target gene

GREB1 overlapped with PGR expression, suggesting ER has

cell-type-specific targets within the normal breast. Consistent

with an earlier report,34 RANK (TNFRSF11A) expression was
donors. Epithelial cells dominate among cell types.

63, EHF, ELF5, ESR1, and FOXA1 expression patterns.

l sample are shown in Figure S1A.



Figure 2. Expression patterns of representative cluster-enriched genes

(A) Genes enriched in basal/stem cell clusters.

(B) Genes enriched in various clusters within luminal progenitor cells.
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restricted to a few luminal progenitor cells, whereas its ligand

RANKL (TNFSF11) expression was observed in progesterone-

receptor-positive mature luminal cells (Figure S2). EHF and

ELF5 expression showed strong signals in subclusters N14

and N16, which could be alveolar progenitor cells, as these

two transcription factors play a major role in alveolar differentia-

tion during pregnancy.35 However, expression ofNFIB and TP63

did not correlate with prior assessment,6 as NFIB expression

was not restricted to basal/stem cells, whereas TP63 expression

was observed only in cluster 15. Cluster 15 is likely composed of

myoepithelial cells, as this cluster expressed higher levels of

ACTA2 and KRT17, previously described markers of myoepithe-

lial cells (Figure S2).14 Although basal cells are expected to ex-

press KRT14, we found its expression predominantly in a sub-

population of luminal progenitor cells and in N15 with

myoepithelial characteristics (Figure 4B). KRT18 and KRT19

expression was found equally in luminal progenitor and mature

luminal subclusters (Figure S2).

To further document reproducibility, we analyzed a surgical

sample from a 33-year-old Hispanic BRCA1 mutation carrier

and a core biopsy of a healthy Asian (Chinese) woman. The

BRCA1 sample was analyzed from cryopreserved tissue,

and we included duplicate samples because of availability of

large starting material. One sample was prepared as above,

involving both enzymatic and mechanical disruption, whereas

another sample utilized only digestion with a gentle hyaluron-

idase/collagenase cocktail from STEMCELL Technologies.

Sample preparation using gentle hyaluronidase/collagenase

yielded lower numbers of basal cells compared to the method

that involved both enzymatic and mechanical disruption.

Nonetheless, we did not observe any clusters unique to the

BRCA1-mutated sample (Figure S1B). The breast tissue

from the Asian/Chinese donor showed a disproportionately

higher number of cells with basal/stem characteristics

compared to other samples.

Gene expression overlap in clusters of two sets of
analysis
We next determined similarities in the clusters of two sets of

analysis by overlapping gene expression between clusters of

the two sets and evaluating their statistical significance. Table

S4 provides a summary of this analysis. With the exception of

N9, N15, and N16, all the other clusters in the new analysis clas-

sified similarly as mature luminal, luminal progenitor, or basal-

cell-type clusters. For example, gene expression in N2, N8,

N12, and N17 overlapped with gene expression in C1, C3, and

C4, which are all mature luminal clusters in both analyses. N0,

N1, N3, N4, N14, and N19 were similar to C0, C2, C6, C11,

and C12, which are all luminal progenitor clusters in both ana-

lyses. N5, N6, N7, N10, N11, N13, N18, N20, N21, and N22 over-

lapped with C5, C7, and C9, which are all basal cell clusters in

both analyses. These results indicate reproducibility of single-

cell sequencing and data analyses.
Figure 3. Mature luminal cells are enriched for ESR1 and XBP1, where

(A) Genes enriched in mature luminal cells. Note that cluster C4 within mature lu

(B) Identification of ESR1-expressing subclusters and genes co-expressed with

(C) Various cell types in the normal breast of a donor.
Cluster 12 in the first analysis was relatively minor, but its

counterpart in the second N0/N1 was relatively large and repre-

sented 15% of cells (Figure 4; Table S2). In addition, cluster 11 of

the first analysis, despite beingminor, expressed several cell-cy-

cle-related genes, such asMKI67 andCDK1. Figure 5 shows the

expression patterns of C11- and C12-enriched genes in the sec-

ond analysis. Similar to C11, N19 expressedMKI67, BIRC5, and

PCLAF. Similar to C12, N0 and N1 expressed PTGDS and IGF1.

N0 and N2 are likely enriched for stemness-associated genes as

well, as these cells expressed higher levels of EGFR and CD44

and low levels of various keratins,36 and likely different from

the rest of the luminal progenitor cells, as they expressed very

low levels of CD49f and EpCAM. A fraction of these cells, as

well as the cluster N6 cells among the basal/stem cell group,

were PROCR+, which is another mammary stem cell marker.37

Note that none of the 23 clusters expressed mesenchymal

stem cell markers, such as CD90, CD73, and CD105.38

The majority of breast cancers are enriched for the
expression of genes in the mature luminal cell clusters
Cell of origin, adaptive cell signaling, and mutational landscape

determine the transcriptome of tumors. Although it is not possible

to definitively link cancer to its cell of origin,12 a recent pan-cancer

analysis revealed cell-of-origin gene signatures are dominant in

tumors.11 To determine whether such a relationship exists be-

tween signatures of normal breast epithelial cell clusters and

breast tumors, we compared gene scores of each epithelial clus-

ter withMETABRIC and TCGAbreast cancer gene expression da-

tasets.2,20 In the TCGA dataset, 795 tumors were ER+ and 237

were ER�; 160 tumors were HER2+ and 558 were HER2�. In

addition, in this dataset, 151 and 932 samples came from

deceased and living donors, respectively. In the METABRIC data-

set, 1,221 samples were ER+ and 683 were ER�; 188 samples

were HER2+ and 1,716 samples were HER2�. In this dataset,

1,102 and 801 samples came from deceased and live donors,

respectively. We used cluster classification of the second anal-

ysis, because this cluster classification was more robust with

higher number of cells per cluster compared to the first analysis.

In both TCGA and METABRIC datasets, gene expression in

the majority of breast cancers overlapped with gene expression

in mature luminal clusters (Table S4; Figure 6A). For example,

gene expression in the highest number of breast tumors

(~68%) overlapped with gene expression in clusters N8 and

N12. N8 and N12 are closely related clusters, both expressing

ESR1 (Figure S2). The next highest overlap between breast tu-

mors and epithelial cell clusters was with the N19 luminal pro-

genitor cluster, particularly in theMETABRIC dataset (Figure 6B).

To gain insight into the putative cell of origin of ER� breast can-

cers, we overlapped our cluster signatures with gene expression

in only ER� breast cancers. The highest number of ER� breast

cancers showed gene expression overlap with mature luminal

N17 and luminal progenitor N19 clusters in the TCGAdataset (Fig-

ure 6B). In the METABRIC dataset, ER� breast cancers were
as SFRP1 is enriched in luminal progenitor cells

minal cells is distinctly enriched for MUCL1 and PIP.

ESR1 in the normal breasts.
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Figure 4. Recharacterization of epithelial

cells of the normal breasts with additional

samples

(A) Combined integrated analyses that included

samples in Figure 1, a new sample from an Asian

(Chinese), and pooled five new samples. There

were 23 clusters of cells, which can be subdivided

into three major groups of basal/stem, luminal

progenitor, and mature luminal cells. Potential my-

oepithelial cells (myo) distinct from basal/stem cells

are also indicated. The bottom panel shows distri-

bution patterns of cell clusters in five samples of the

first set and the five pooled samples of the second

set. Clusters in individual samples are shown in

Figure S1B. Expression patterns of various markers

that are used to subclassify clusters are shown

Figure S2.

(B) CD49f, EpCAM, ALDH1A3, and KRT14

expression in various clusters.
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represented in N8/N12 mature luminal clusters and luminal pro-

genitor N19. Similar to ER� breast cancers, gene expression in

HER2+ breast cancers of the METABRIC dataset overlapped

with gene expression in the N8/N12 and N19 clusters (Figure 6B).

We used the PAM50 classifier to subclassify breast cancers

into intrinsic subtypes luminal A, luminal B, basal, and claudin-

low and then did gene expression overlap analysis. Cluster N8

still appears to be dominantly represented in all tumor subtypes,

followed by N19 and N12 (Figure 6B).
8 Cell Reports Medicine 2, 100219, March 16, 2021
We generated Kaplan-Meier curves of

tumors with gene expression overlapping

with specific clusters either globally or in a

subtype-specific manner. In the global

analysis, tumors with gene expression pat-

terns overlapping N19 clusters displayed

better outcome compared to tumors with

gene expression patterns overlapping

either N8 or N12 (Figure S3). In subtype-

wise comparisons, tumors with gene

expression overlapping N19 displayed bet-

ter outcome compared to N8 or N12, with

the exception of the HER2+ subtype (Fig-

ures 6C and S3). In HER2+ cases, tumors

with gene expression overlapping N8 dis-

played better outcome than those with

N19 cluster gene expression overlap (Fig-

ure S3). Thus, gene expression signatures

derived from normal breast epithelial cell

clusters can be developed into prognostic

signatures using well-annotated datasets.

TBX3 and PDK4 expression patterns
determine subtypes of ER+ breast
cancers
We observed expression of ESR1 in three

mature luminal clusters (C1, C3, and C4) of

the normal breasts, which are character-

ized by expression of TBX3, PDK4, and
GATA3 in the first analysis (Figure 3C). In the second analysis,

mature luminal clusters N2, N8, N12, and N17 expressed vari-

able levels of ESR1 (Figure S2). Among these four clusters, N2

and N8, but not N12 and N17, expressed FOXA1, GATA3, and

TBX3 (Table S3). Because FOXA1 and GATA3 serve as pioneer

factors and regulate ER activity through chromatin accessi-

bility,29 ER activity is likely regulated differently in N12 and N17

clusters compared to N2 and N8. In this study, we focused our

attention on PDK4 and TBX3, given that their expression is linked



Figure 5. Gene expression in clusters N19 and N0–N1 of Figure 4 overlap with unique genes in C11 and C12, respectively

(A) MKI67, BIRC5, and PCLAF, which are all overexpressed in cluster C11 (Figure 1D), are enriched in N19.

(B) PTGDS and IGF1, which are overexpressed in cluster C12 (Figure 1D), are enriched in N0–N1 clusters. This cluster also expresses ZEB1 and

EGFR.
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Figure 6. Breast-cancer-subtype-specific expression of cluster-signature genes

(A) Breast cancer gene expression data in TCGA (left) and METABRIC datasets were analyzed for enrichment of cluster-specific genes described in Table S3.

(B) PAM50 intrinsic subtype classifiers were used to subdivide breast cancers into luminal A, luminal B, HER2, basal, and claudin-low subtypes. Enrichment of

cluster-specific genes in these subtypes of breast cancer were further analyzed.

(C) Kaplan-Meier curves show overall survival based on overlap in gene expression between specific clusters and specific subtypes of breast cancer. Additional

data can be found in Figure S3.
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to anti-estrogen response.39,40 To determine whether there is a

relationship between clinical progression and ER/TBX3/PDK4

status, we immunostained a 586 breast tumor containing tissue

microarray (TMA) with 15 years of follow up for TBX3 and PDK4.

As expected, although TBX3 staining was predominantly nu-

clear, PDK4 expression was cytoplasmic (Figure 7A).

PDK4 expression levels correlated with ER+/PR+/HER2� sta-

tus (p = 0.0113). However, higher PDK4 H-score correlated with

lower overall survival (hazard ratio 1.382; p = 0.0431). In multivar-

iable models treating the PDK4 H-score as dichotomous, H-

score category was significant for tumors that are ER+ and for

ER+ tumors where the patient was on endocrine therapy (Table

S5). In multivariable models treating the H-score as a continuous

variable, the H-score was significant in the subset of patients

who were ER+ on endocrine therapy and for patients who

were ER+/PR+/HER2�. Kaplan-Meier curves of disease-free

survival analyses are shown in Figure 7B.

In the case of TBX3, expression levels correlated with tumor

grades (p < 0.0001) and stage (p = 0.0063). Higher grade/stage

tumors had higher TBX3 expression compared to lower grade/

stage tumors. However, higher TBX3 H-score correlated with

better overall survival (hazard ratio 0.721; p = 0.033). In multivari-

able models treating the H-score as dichotomous, H-score cate-

gory was significant for patients with tumors that were ER+ and

not on endocrine therapy and patients whose tumors were not

ER+/PR+/HER2� (Table S5). In multivariable models treating

the H-score as continuous, the H-score was significant in pa-

tients whose cancers were not ER+/PR+/HER2�.

Because our TMA had >300 ER+ cases, we were able to

perform subgroup analyses that included all three markers: ER;

TBX3; and PDK4. The analyses included ER+/TBX3+/PDK4+,

ER+/TBX3+/PDK4low, ER+/TBX3low/PDK4high, and ER+/

TBX3low/PDK4low. Although we did not observe any difference

in overall survival between these groups, disease-free survival

was shorter for patients with the tumors displaying ER+/

TBX3low/PDK4low expression patterns compared to ER+/

TBX3+/PDK4+ expression patterns (Figure 7B). Among 399

ER+ tumors, 138 displayed ER+/TBX3+/PDK4+ characteristics

and 57 showed ER+/TBX3low/PDK4low characteristics. These re-

sults indicate that ER+ breast cancers can be subclassified into

at least four distinct subtypes based on TBX3 and PDK4 expres-

sion patterns, potentially representing four different cells of origin

of ER+ breast cancers.

DISCUSSION

In this study, we present evidence for the presence of 23 different

clusters of epithelial cells in the normal breast. We also show that

the gene expression patterns of a majority of breast cancers

overlap with gene expression signatures from four clusters; three

of them are mature luminal and one is a luminal progenitor clus-

ter. It is possible that cells in these four clusters are the cancer-
Figure 7. PDK4 and TBX3 enable further classification of ER+ breast c

(A) Immunohistochemistry of breast TMA for PDK4 and TBX3.

(B) ER+ breast cancers expressing lower levels of PDK4 compared to tumors wit

disease-free survival (DFS). Similarly, ER+ tumors expressing lower levels of bot

TBX3 were associated with poor DFS.
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prone population of normal breast epithelial cells. We acknowl-

edge that the number of samples that gave quality single-cell

data is relatively small, which is mainly due to the use of breast

core biopsies with different cellularity instead of surgical spec-

imen for single-cell analysis. Nonetheless, findings from this

study may permit breast cancer classification based on cell of

origin of tumors. Although each intrinsic subtype of breast can-

cer ostensibly has a distinct cell of origin in the breast stem-pro-

genitor-mature cell hierarchy,3 we observed a cluster-enriched

signature being represented in more than one intrinsic subtype

and an intrinsic subtype being represented in more than one

cluster of epithelial cells. Existing technologies do not permit

experimental validation of cell of origin of tumors, but the use

of techniques such as scRNA-seq may allow further refinement

of cancer classification based on presumptive cell of origin.

Complexities in breast epithelial cell types: past and the
present
Because scRNA-seq technology is still an evolving field requiring

constant improvement, starting from source of tissues to dissoci-

ation protocols, sequencing techniques, and bioinformatics

tools,13 it is likely that clusters that we identified here will undergo

further refinement in the future. Thus, it is appropriate to compare

what has been done in the past to the current data. There has

been a limited number of studies that utilized scRNA-seq technol-

ogy to subclassify breast epithelial cells. Two publications, to our

knowledge, utilized tissues from reduction mammoplasty sam-

ples, and cells were either purified by flow cytometry or grown un-

der organoid cultures prior to single-cell sequencing.14,21

Although our source of tissue and methodology differed signifi-

cantly from these studies, as we used breast tissues from healthy

women andwere able to prepare single-cell cDNAwithin 2 h of tis-

sue collection, there were several overlapping observations. For

example, the L2 luminal differentiated cell cluster described by

Nguyen et al.,14 luminal differentiated cluster C3 in our first anal-

ysis, and cluster N8 of our second analysis are enriched for

ANKRD30A (p = 1.67E�31; Table S2). Similarly, luminal progeni-

tor cluster L1 in that study and our luminal progenitor subcluster

C10 are enriched for the expression of SLPI and ANXA1. Similar

to that study, our luminal mature cell subcluster 4 was enriched

for PIP. A basal subcluster identified by Nguyen et al.14 and our

cluster 5 (N5 and N22 of the second analysis; Table S3), which

is basal, both expressed TCF4. There were a few differences.

Nguyen et al.14 suggested that ACTA2, which codes for a-SMA,

distinguishes basal/myoepithelial cell from other cell types.

Although we observed expected enrichment of ACTA2 in basal

subclusters, it is also expressed in a distinct subcluster of luminal

progenitor cells (cluster C6 of the first analysis andN15 of the sec-

ond analysis). Both cluster C6 and the corresponding N15 are en-

riched forMYLK, an actin binding protein, regulated byZEB1/miR-

200 feedback loop associated with epithelial-to-mesenchymal

transition.41 It is possible that cluster C6 (N15) cells correspond
ancers

h higher PDK4 and not received endocrine therapy were associated with poor

h TBX3 and PDK4 compared to tumors expressing higher levels of PDK4 and
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to naturally occurring luminal/basal hybrid cells that can trans-

differentiate based on environmental cues or to mixed luminal/

basal lineage cells described in the mouse mammary gland.15

Three studies have described distinct cell types in the mouse

mammary gland during different stages of development and

lactation.15,16,42 Similar to differences in the number of epithelial

subgroups identified in two human studies (three by Nguyen

et al.14 and 23 by us), Bach et al.16 identified 15 clusters ofmouse

mammary epithelial cells through single-cell sequencing of

sorted EpCAM+ cells. Pal et al.15 identified seven clusters of

epithelial cells. There is some overlap in genes expressed in spe-

cific clusters of the mouse mammary gland and human tissue

identified in our study. Similar to our results, Pal et al.15 showed

ACTA2 expression in both basal cells and two small subclusters

of luminal cells. CXCL14 expression was found in a subset of

luminal progenitor cells and basal cells (N0, N15, and N22).

Gene expression in hormone-sensing cells that included ESR1

and FOXA1 showed similarity in expression between Bach

et al.16 and our studies. Pal et al.15 identified SFRP1 as a marker

of pre-pubertal mammary epithelial cells, which decreased after

puberty. In our analysis, SFRP1-expressing cells were luminal

progenitor cells.

Basal, luminal progenitor, andmature luminal cells are defined

using cell surface markers CD49f and EpCAM.4 However, these

markers are not ideal for in situ estimation of the three cell types.

A closer look at genes enriched in each cluster and their signa-

ture genes revealed that XBP1 is expressed predominantly in

luminal mature cells, whereas SFRP1 is expressed predomi-

nantly in luminal progenitor cells. XBP1 expression pattern is

interesting, as its expression is linked to estrogen independence

and anti-estrogen resistance in breast cancer,43,44 and differ-

ences in its basal expression levels between luminal mature cells

may determine hormone dependency of cells. Multiple genes are

enriched in basal cell clusters, including CLDN5 (N5 and N7),

CD36 (N7), and CD93 (N5, N13, and N22). These genes can be

used in the future for in situ estimation of composition of the

breast.

Gene signatures of epithelial clusters and their
relevance to breast cancer
Although prior reports suggested that the majority of breast can-

cers originate from luminal progenitors, gene expression signa-

tures of only the N19 luminal progenitor cluster showed overlap

with gene expression in ~20% of breast cancer. This cluster as

well as its counterpart in the first analysis (C9), although repre-

senting <2% of epithelial cells, is characterized by expression

of cell cycle markersMKI67 and TK1 (p = 3.83E�13) and mitotic

spindle checkpoint protein ZWINT (p = 4.62E�17). Distinct cell

cycle regulatory pathways may predispose cells of this cluster

for aberrant chromosome segregation and mutations.

With respect to ER+ breast cancers, these cancers can origi-

nate from both luminal mature and luminal progenitor cells, as

gene expression in the majority of luminal A and luminal B breast

cancers overlapped with gene expression in the N8 and N12

mature luminal clusters and the N19 luminal progenitor cluster.

Although ESR1 expression in luminal progenitor cells is unde-

tectable compared to that in mature luminal cells (Figure S2), it

is possible that luminal A and luminal B breast cancers with
luminal progenitor cell origin may acquire ESR1 expression dur-

ing transformation. The N8 cluster expresses the highest level of

ESR1 as well as its pioneer factors FOXA1, GATA3, and also

TBX3. Using an independent TMA, we were able to further sub-

classify mature luminal cell-derived ER+ tumors based on TBX3

and PDK4 expression. Although the role of TBX3 in ER activity

and its mutations in ER+ lobular carcinomas have been

described in the literature,39,45 there are no studies that function-

ally linked PDK4 to ER. PDK4 is a cytoplasmic kinase involved in

the citric acid cycle and induces metabolic changes in trans-

formed cells.46 Whether it also modulates transcription by tar-

geting transcription machinery needs further investigation.

scRNA-seq as well as single-cell protein sequencing have

been used to subclassify breast cancers and to identify treat-

ment-resistant populations. For example, Karaayvaz et al.47

described an aggressive disease-associated gene signature

related to glycosphingolipid metabolism by scRNA-seq study

of six triple-negative breast cancers (TNBCs). However, pathway

analyses of our cluster-enriched genes did not identify a normal

breast epithelial cluster enriched for this pathway. Similarly, sig-

natures derived through scRNA-seq of a chemoresistant sub-

population of TNBCs did not show overlapwith any of our normal

cell clusters.48 Genes in the breast-cancer-specific RNA signa-

ture that detect circulating tumor cells did not show overlap

with any specific cluster, but genes like CXCL14 (N0, N15, and

N22) and SFRP2 (N0, N1, N21, and N22), which are markers of

circulating tumor cells, are enriched in distinct clusters.49 Thus,

genomic aberrations and transcription programming rather

than cell of origin may have given rise to drug-resistant and met-

astatic subpopulations of tumor cells.

From a basic research point of view, results presented here

provide an opportunity to determine whether a gene is truly

differentially expressed in tumors compared to normal, as the

expression pattern of a specific gene in the tumor could be a

reflection of its cell of origin. Using single-cell RT-PCR of tu-

mor-adjacent normal and tumor cells from the same individual,

we had previously demonstrated that elevated expression of

few genes in tumor can be attributed to cell of origin of tumor

instead of a tumor-specific genomic aberration.10 Resources

created here, which will be made available to researchers, can

be mined for expression patterns of specific genes in various

epithelial clusters of the normal breasts using a tool such as

Loupe Browser of 10X Genomics. This approach would also

allow streamlining of drug discovery efforts by focusing on tar-

gets that are truly differentially expressed in tumors due to

genomic aberrations.

Limitations of study
scRNA-seq studies, including one reported here, have tech-

nical limitations, as the current scRNA-seq methods accurately

sample only 10%–40% of all transcripts of a cell and that

several of the transcriptional events identified by RNA-seq are

not replicated in the proteome. Thus, interpreting these results

in the context of biological functions needs some caution.

Because our study involved breast biopsies of healthy women,

tissue is very limited in quantity, and breast-region-specific dif-

ferences in the cell types could not be ascertained. Recent

studies have identified different biology and marker profiles in
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fibroblasts of the ductal and lobular regions of the breast,24 and

it will not be a surprise if transcriptome of epithelial cells in the

ductal and lobular regions are different, which the current ap-

proaches cannot address. Lastly, it is difficult to account for in-

ter-individual differences in transcriptome due to genetic diver-

sity in the human population.50 An extensive study that includes

tissues from multiple regions of the breast from several donors

of different age groups and genetic ancestry is required to

generate a comprehensive single-cell map of the normal

breasts. Nonetheless, we establish that it is feasible to map

the breast of healthy women at single-cell level through a stan-

dardized and rapid tissue collection and processing procedure.
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long, J., Rivas, M.A., Gonzàlez-Porta, M., Kurbatova, N., Griebel, T., Fer-

reira, P.G., et al.; Geuvadis Consortium (2013). Transcriptome and

genome sequencing uncovers functional variation in humans. Nature

501, 506–511.

51. Perkins, S.M., Bales, C., Vladislav, T., Althouse, S., Miller, K.D., Sandusky,

G., Badve, S., and Nakshatri, H. (2015). TFAP2C expression in breast can-

cer: correlation with overall survival beyond 10 years of initial diagnosis.

Breast Cancer Res. Treat. 152, 519–531.

52. Butler, A., Hoffman, P., Smibert, P., Papalexi, E., and Satija, R. (2018). Inte-

grating single-cell transcriptomic data across different conditions, tech-

nologies, and species. Nat. Biotechnol. 36, 411–420.

53. Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., Mauck,

W.M., 3rd, Hao, Y., Stoeckius, M., Smibert, P., and Satija, R. (2019).

Comprehensive integration of single-cell data. Cell 177, 1888–1902.e21.

54. McCarthy, D.J., Campbell, K.R., Lun, A.T., and Wills, Q.F. (2017). Scater:

pre-processing, quality control, normalization and visualization of single-

cell RNA-seq data in R. Bioinformatics 33, 1179–1186.

55. Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis

(Springer-Verlag).

56. Gu, Z., Eils, R., and Schlesner, M. (2016). Complex heatmaps reveal pat-

terns and correlations in multidimensional genomic data. Bioinformatics

32, 2847–2849.

57. Tibshirani, R., Hastie, T., Narasimhan, B., and Chu, G. (2002). Diagnosis of

multiple cancer types by shrunken centroids of gene expression. Proc.

Natl. Acad. Sci. USA 99, 6567–6572.

58. Parker, J.S., Mullins, M., Cheang, M.C., Leung, S., Voduc, D., Vickery, T.,

Davies, S., Fauron, C., He, X., Hu, Z., et al. (2009). Supervised risk predic-

tor of breast cancer based on intrinsic subtypes. J. Clin. Oncol. 27, 1160–

1167.
16 Cell Reports Medicine 2, 100219, March 16, 2021
59. Pereira, B., Chin, S.F., Rueda, O.M., Vollan, H.K., Provenzano, E., Bard-

well, H.A., Pugh, M., Jones, L., Russell, R., Sammut, S.J., et al. (2016).

The somatic mutation profiles of 2,433 breast cancers refines their

genomic and transcriptomic landscapes. Nat. Commun. 7, 11479.

60. Ellrott, K., Bailey, M.H., Saksena, G., Covington, K.R., Kandoth, C., Stew-

art, C., Hess, J., Ma, S., Chiotti, K.E., McLellan, M., et al.; MC3 Working

Group; Cancer Genome Atlas Research Network (2018). Scalable open

science approach for mutation calling of tumor exomes using multiple

genomic pipelines. Cell Syst. 6, 271–281.e7.

61. Taylor, A.M., Shih, J., Ha, G., Gao, G.F., Zhang, X., Berger, A.C., Schu-

macher, S.E., Wang, C., Hu, H., Liu, J., et al.; Cancer Genome Atlas

Research Network (2018). Genomic and functional approaches to under-

standing cancer aneuploidy. Cancer Cell 33, 676–689.e3.

62. Gao, Q., Liang, W.W., Foltz, S.M., Mutharasu, G., Jayasinghe, R.G., Cao,

S., Liao, W.W., Reynolds, S.M., Wyczalkowski, M.A., Yao, L., et al.; Fusion

Analysis Working Group; Cancer Genome Atlas Research Network (2018).

Driver fusions and their implications in the development and treatment of

human cancers. Cell Rep. 23, 227–238.e3.

63. Liu, J., Lichtenberg, T., Hoadley, K.A., Poisson, L.M., Lazar, A.J., Cher-

niack, A.D., Kovatich, A.J., Benz, C.C., Levine, D.A., Lee, A.V., et al.; Can-

cer Genome Atlas Research Network (2018). An integrated TCGA pan-

cancer clinical data resource to drive high-quality survival outcome ana-

lytics. Cell 173, 400–416.e11.

64. Sanchez-Vega, F., Mina, M., Armenia, J., Chatila, W.K., Luna, A., La, K.C.,

Dimitriadoy, S., Liu, D.L., Kantheti, H.S., Saghafinia, S., et al.; Cancer

Genome Atlas Research Network (2018). Oncogenic signaling pathways

in The Cancer Genome Atlas. Cell 173, 321–337.e10.

65. Bhandari, V., Hoey, C., Liu, L.Y., Lalonde, E., Ray, J., Livingstone, J., Le-

surf, R., Shiah, Y.J., Vujcic, T., Huang, X., et al. (2019). Molecular land-

marks of tumor hypoxia across cancer types. Nat. Genet. 51, 308–318.

66. Cerami, E., Gao, J., Dogrusoz, U., Gross, B.E., Sumer, S.O., Aksoy, B.A.,

Jacobsen, A., Byrne, C.J., Heuer, M.L., Larsson, E., et al. (2012). The cBio

cancer genomics portal: an open platform for exploring multidimensional

cancer genomics data. Cancer Discov. 2, 401–404.

67. Gao, J., Aksoy, B.A., Dogrusoz, U., Dresdner, G., Gross, B., Sumer, S.O.,

Sun, Y., Jacobsen, A., Sinha, R., Larsson, E., et al. (2013). Integrative anal-

ysis of complex cancer genomics and clinical profiles using the cBioPortal.

Sci. Signal. 6, pl1.

68. Kassambara, A., Kosinski, M., and Biecek, P. (2019). Drawing survival

curves using ‘ggplot2’. R package version 0.4.6. https://CRAN.

R-project.org/package=survminer.

69. R Development Core Team (2020). R: A language and environment for sta-

tistical computing (R Foundation for Statistical Computing). https://www.

R-project.org/.

http://refhub.elsevier.com/S2666-3791(21)00035-5/sref47
http://refhub.elsevier.com/S2666-3791(21)00035-5/sref47
http://refhub.elsevier.com/S2666-3791(21)00035-5/sref47
http://refhub.elsevier.com/S2666-3791(21)00035-5/sref47
http://refhub.elsevier.com/S2666-3791(21)00035-5/sref48
http://refhub.elsevier.com/S2666-3791(21)00035-5/sref48
http://refhub.elsevier.com/S2666-3791(21)00035-5/sref48
http://refhub.elsevier.com/S2666-3791(21)00035-5/sref48
http://refhub.elsevier.com/S2666-3791(21)00035-5/sref49
http://refhub.elsevier.com/S2666-3791(21)00035-5/sref49
http://refhub.elsevier.com/S2666-3791(21)00035-5/sref49
http://refhub.elsevier.com/S2666-3791(21)00035-5/sref49
http://refhub.elsevier.com/S2666-3791(21)00035-5/sref49
http://refhub.elsevier.com/S2666-3791(21)00035-5/sref50
http://refhub.elsevier.com/S2666-3791(21)00035-5/sref50
http://refhub.elsevier.com/S2666-3791(21)00035-5/sref50
http://refhub.elsevier.com/S2666-3791(21)00035-5/sref50
http://refhub.elsevier.com/S2666-3791(21)00035-5/sref50
http://refhub.elsevier.com/S2666-3791(21)00035-5/sref51
http://refhub.elsevier.com/S2666-3791(21)00035-5/sref51
http://refhub.elsevier.com/S2666-3791(21)00035-5/sref51
http://refhub.elsevier.com/S2666-3791(21)00035-5/sref51
http://refhub.elsevier.com/S2666-3791(21)00035-5/sref52
http://refhub.elsevier.com/S2666-3791(21)00035-5/sref52
http://refhub.elsevier.com/S2666-3791(21)00035-5/sref52
http://refhub.elsevier.com/S2666-3791(21)00035-5/sref54
http://refhub.elsevier.com/S2666-3791(21)00035-5/sref54
http://refhub.elsevier.com/S2666-3791(21)00035-5/sref54
http://refhub.elsevier.com/S2666-3791(21)00035-5/sref55
http://refhub.elsevier.com/S2666-3791(21)00035-5/sref55
http://refhub.elsevier.com/S2666-3791(21)00035-5/sref56
http://refhub.elsevier.com/S2666-3791(21)00035-5/sref56
http://refhub.elsevier.com/S2666-3791(21)00035-5/sref56
http://refhub.elsevier.com/S2666-3791(21)00035-5/sref57
http://refhub.elsevier.com/S2666-3791(21)00035-5/sref57
http://refhub.elsevier.com/S2666-3791(21)00035-5/sref57
http://refhub.elsevier.com/S2666-3791(21)00035-5/sref58
http://refhub.elsevier.com/S2666-3791(21)00035-5/sref58
http://refhub.elsevier.com/S2666-3791(21)00035-5/sref58
http://refhub.elsevier.com/S2666-3791(21)00035-5/sref58
http://refhub.elsevier.com/S2666-3791(21)00035-5/sref59
http://refhub.elsevier.com/S2666-3791(21)00035-5/sref59
http://refhub.elsevier.com/S2666-3791(21)00035-5/sref59
http://refhub.elsevier.com/S2666-3791(21)00035-5/sref59
http://refhub.elsevier.com/S2666-3791(21)00035-5/sref60
http://refhub.elsevier.com/S2666-3791(21)00035-5/sref60
http://refhub.elsevier.com/S2666-3791(21)00035-5/sref60
http://refhub.elsevier.com/S2666-3791(21)00035-5/sref60
http://refhub.elsevier.com/S2666-3791(21)00035-5/sref60
http://refhub.elsevier.com/S2666-3791(21)00035-5/sref61
http://refhub.elsevier.com/S2666-3791(21)00035-5/sref61
http://refhub.elsevier.com/S2666-3791(21)00035-5/sref61
http://refhub.elsevier.com/S2666-3791(21)00035-5/sref61
http://refhub.elsevier.com/S2666-3791(21)00035-5/sref62
http://refhub.elsevier.com/S2666-3791(21)00035-5/sref62
http://refhub.elsevier.com/S2666-3791(21)00035-5/sref62
http://refhub.elsevier.com/S2666-3791(21)00035-5/sref62
http://refhub.elsevier.com/S2666-3791(21)00035-5/sref62
http://refhub.elsevier.com/S2666-3791(21)00035-5/sref63
http://refhub.elsevier.com/S2666-3791(21)00035-5/sref63
http://refhub.elsevier.com/S2666-3791(21)00035-5/sref63
http://refhub.elsevier.com/S2666-3791(21)00035-5/sref63
http://refhub.elsevier.com/S2666-3791(21)00035-5/sref63
http://refhub.elsevier.com/S2666-3791(21)00035-5/sref64
http://refhub.elsevier.com/S2666-3791(21)00035-5/sref64
http://refhub.elsevier.com/S2666-3791(21)00035-5/sref64
http://refhub.elsevier.com/S2666-3791(21)00035-5/sref64
http://refhub.elsevier.com/S2666-3791(21)00035-5/sref65
http://refhub.elsevier.com/S2666-3791(21)00035-5/sref65
http://refhub.elsevier.com/S2666-3791(21)00035-5/sref65
http://refhub.elsevier.com/S2666-3791(21)00035-5/sref66
http://refhub.elsevier.com/S2666-3791(21)00035-5/sref66
http://refhub.elsevier.com/S2666-3791(21)00035-5/sref66
http://refhub.elsevier.com/S2666-3791(21)00035-5/sref66
http://refhub.elsevier.com/S2666-3791(21)00035-5/sref67
http://refhub.elsevier.com/S2666-3791(21)00035-5/sref67
http://refhub.elsevier.com/S2666-3791(21)00035-5/sref67
http://refhub.elsevier.com/S2666-3791(21)00035-5/sref67
https://CRAN.R-project.org/package=survminer
https://CRAN.R-project.org/package=survminer
https://www.R-project.org/
https://www.R-project.org/


Article
ll

OPEN ACCESS
STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

PDK4 Abcam Cat # Ab71240; RRID: AB_1269709

TBX3 Abcam Cat# Ab99302; RRID: AB_10861059

Biological samples

Human Breast tissues Komen tissue bank and IUSCCC

tissue bank

N/A

Human Breast Cancer Tissue

Microarray

IUSCCC tissue bank N/A

Chemicals, peptides, and recombinant proteins

Cryopreservation media LONZA 12-132A

ROCK Inhibitor Y-27632 TOCRIS 1254

Gentle Collagenase/Hyaluronidase StemCell technologies 07919

Tumor dissociation kit (human) Miltenyi Biotech 130-095-929

Red cell lysis buffer Miltenyi Biotech 130-094-183

Debris removal kit Miltenyi Biotech 130-109-398

Critical commercial assays

Chromium Single cell 30reagents 10X Genomics CG00052 Rev B or CG000183 Rev C

Bioanalyzer HSDNA CHIP G2943CA Agilent

Deposited data

Single cell RNA-seq GEO GSE164898

Experimental models: organisms/strains

Breast tissues from healthy women Komen Tissue Bank and IU Simon

Cancer Center Tissue Bank with the

approval from the Institutional

Review Board.

Table S1 for details

Software and algorithms

CellRanger 2.1.0 or 3.0.2 10X Genomics https://support.10xgenomics.com

Loupe Browser 10X Genomics https://support.10xgenomics.com/

single-cell-gene-expression/

software/visualization/latest/

installation

SAS Version 9.4 SAS Analytical Software https://www.sas.com
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Harikrishna Nakshatri

(hnakshat@iupui.edu)

Materials availability
This study did not generate unique reagents.

Data and code availability
The accession number for the single cell sequence data reported in this paper is GEO GSE164898.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Normal breast tissues
All breast tissues from healthy women were collected by the Komen Normal Tissue Bank with informed consent and with the

approval from the institutional review board. International Ethical Guidelines for Biomedical Research Involving Human subjects

were followed. Standard operating procedure for tissue collection is described on the Komen Tissue Bank website. Per stan-

dard operating procedures, the normal breast biopsies were always collected from the upper outer quadrant of the breasts.

Within an average of six minutes from the time of biopsy, tissues were either placed in a growth media and transported to

the lab for immediate single cell sequencing or cryopreserved for single cell sequencing at a later date. Our cryopreservation

protocol has been described previously.17 Briefly, tissue was minced and placed in one ml of 50% growth media and 50%

Lonzo freezing media with 2 mM ROCK inhibitor. Vials with tissues were placed in CoolCell Containers (Nalgene) and placed

in a �80�C freezer overnight and then in liquid nitrogen. Tissue specimens were thawed rapidly at 37�C and then washed exten-

sively in growth media prior to dissociation. Tissue specimens represented women of different race, age, parity, menstrual

phase, Tyrer-Cuzick score, and BMI (Table S1).

METHOD DETAILS

Tissue dissociation procedure, cDNA library preparation and sequencing
Weused the human tumor dissociation kit fromMiltenyi Biotech to generate single cells from tissue specimens. Red blood lysis buffer

and debris removal solution were used as needed to improve purity of single cells. Viability and single cell status were determined via

trypan blue staining and phase contrast microscopy. Samples with 80%ormore viability were utilized for the subsequent steps. Cells

were suspended at ~100-800 cells/ml depending on sample and subjected to cDNA library generation using 10 X Genomics V2 (initial

study) or V3 (second set of samples) Chromium Single Cell 30 Reagents (CG00052 Rev B and CG000183 Rev C, respectively). We

used HSDNAChips on the Bioanalyzer from Agilent technologies (G2943CA) to quantify cDNA. cDNAwas amplified using Chromium

TMSingle cell Library kit v2 or v3. The resulting libraries were sequenced on Illumina NovaSeq 6000 to a read depth of ~50,000 reads

per cell. 26 bp of cell barcode and UMI sequences, and 91 bp RNA reads were generated for the libraries made with the V2 kit; and

28 bp plus 91 bp paired-end for the libraries with the V3 kit.

Breast cancer TMA and immunostaining for TBX3 and PDK4
The breast cancer TMA with ~15-years of follow up has been described previously.51 All tissue samples were collected following a

detailed IRB approved protocol, informed patient consent, and HIPAA compliance protocol. Tissues were fixed overnight at room

temperature in 10% NBF. A pathologist (GES) utilized light microscopy (Leica) to evaluate the staining in each tissue core (range

from 0 to +3) to make sure there was no over staining and/or extensive background staining. The slides were imaged using the Aperio

Scanscope CS. Computer-assisted morphometric analysis of digital images was performed using the Aperio Image Analysis soft-

ware that came with the Aperio Whole Slide Digital Imaging System. The Positive Pixel Count algorithm was used to quantify the

amount of a specific stain present in a scanned slide image. A range of color (range of hues and saturation) and three intensity ranges

(weak, positive, and strong) were masked and evaluated. The algorithm counted the number and intensity-sum in each intensity

range, along with three additional quantities: average intensity, ratio of strong/total number, and average intensity of weak positive

pixels.

The algorithm was applied to an image by using the TMA Lab algorithm. This program allowed us to select each core, specify the

input parameters, run the algorithm, and view/save the algorithm results. When using the Image Scope program, a pseudo-color

markup image is also shown as an algorithm result. The H score was calculated using the Aperio TMA software algorithm. Formula

is:

ð100 � ðweak positive + ð2 �normal positiveÞ + ð3 � strong positiveÞÞÞ=Total
Approximately 80 to 90 breast biopsies in each of the 14 breast TMA immunostain were evaluated with TBX3 and PDK4 antibodies.

Anti-PDK4 (ab71240) and anti-TBX3 (ab99302) antibodies were obtained from Abcam. The normal tissue controls (TMA orientation

cores) were normal liver, cecum, kidney, spleen, tonsil, and heart.

With TBX3, immunostaining was seen in both the cytoplasm and nucleus in most tumor cells, and within few stromal cells in a few

cases. In cases with inflammation, several of the lymphocytes (subset) were strongly stained. Staining patterns in tumor cells ranged

fromweak tomoderate to strong. The two cores from the same patient in the arrays were often similar depending on the amount of fat

and /or stroma in the core. Little to no background staining was seen in the other tissues in the core (vascular endothelial cells,

smooth muscle cells, adipocytes, and fibroblasts).

With PDK4, immunostaining was seen in the cytoplasm of most tumor cells and in some cases, that of a few stroma cells. Lympho-

cyte staining was seen only in cases with inflammation. The tumor cells were weak to moderate to strong in staining with two cores

from the same patient. This was consistent in all arrays with minimal background staining in the other tissues in the core (vascular

endothelial cells, smooth muscle cells, adipocytes, and fibroblasts).
e2 Cell Reports Medicine 2, 100219, March 16, 2021
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QUANTIFICATION AND STATISTICAL ANALYSIS

Analysis of scRNA-seq sequence data
CellRanger 2.1.0 or 3.0.2 (https://support.10xgenomics.com/) was utilized to process the raw sequence data generated. Briefly, Cell-

Ranger used bcl2fastq (https://support.illumina.com/) to demultiplex raw base sequence calls generated from the sequencer into

sample-specific FASTQ files. The FASTQ files were then aligned to the human reference genome GRCh38 with RNA-seq aligner

STAR. The aligned reads were traced back to individual cells and the gene expression level of individual genes were quantified based

on the number of UMIs (unique molecular indices) detected in each cell.

The filtered gene-cell barcode matrices generated with CellRanger were used for further analysis with the R package Seurat

version 2.3.1 and development version 3.0.0.9000 with R studio version 1.1.453 and R version 3.5.1.52,53 Quality control (QC) of

the data was implemented as the first step in our analysis. We first filtered out genes that were detected in less than five cells and

cells with less than 200 genes. To further exclude low-quality cells in downstream analysis we used the function isOutlier fromRpack-

age scater together with visual inspection of the distributions of number of genes, UMIs, andmitochondrial gene content.54 Cells with

extremely high or low number of detected genes/UMIs were excluded. In addition, cells with high percentage of mitochondrial reads

were also filtered out. After removing likely doublets/multiplets and low-quality cells, the gene expression levels for each cell were

normalizedwith the NormalizeData function in Seurat. To reduce variations sourced from different number of UMIs andmitochondrial

gene expression, we used the ScaleData function to linearly regress out these variations. Highly variable genes were subsequently

identified.

To integrate the single cell data from individual donor samples, functions FindIntegrationAnchors and IntegrateData fromSeurat v3

were implemented. The integrated data was then scaled and PCA was performed. Clusters were identified with the Seurat functions

FindNeighbors and FindClusters. The FindConservedMarkers function was subsequently used to identify canonical cell type marker

genes. Cell cluster identities were manually defined with the cluster-specific marker genes or known marker genes. The cell clusters

were visualized using the UMAP plots. To help interactively explore various gene expression pattern across cell clusters, the UMAP

cell embeddings and cell cluster information generated from Seurat analysis were imported into 10X genomics Loupe Browser

(https://support.10xgenomics.com/single-cell-gene-expression/software/visualization/latest/installation). R packages ggplot2 and

Seurat FeaturePlot were used to generate feature plots to visualize specific gene expression across clusters. R package Complex-

Heatmap was used to generate the heatmaps.55,56

TCGA and METABRIC dataset analyses
3186 genes in all 23 clusters of the second analyses are considered as signatures (Table S3). Centroids of clusters were generated for

Prediction Analysis of Microarray (PAM) algorithm using the 3186 genes.57,58 Expression, clinical, and mutation data of METABRIC

and TCGA BRCA were retrieved from cBioportal.11,59–67 Expression data are median centered and applied to the PAM classifier

based on the 3186 genes using Spearman’s rank correlation as distance. Each sample in METABRIC and TCGA BRCA data was

assigned to one of the 23 clusters. Relationship of each sample’s cluster membership with intrinsic subtypes was analyzed. Survival

analysis of METABRIC samples between clusters were analyzed using R package survminer v0.4.6 in R.55,68,69

Statistical analyses of TMA data
For subjects with multiple tumor samples available, we included only the sample with the highest PDK4 or TBX3 H-score. Wilcoxon

Rank Sum and Kruskal-Wallis tests were used to determine if PDK4 or TBX3 H-scores correlated with other tumor markers. Cox pro-

portional hazards regression models were used to determine whether H-scores and other variables were related to overall and dis-

ease-free survival either univariately or in multivariable models. In these analyses, TBX3 H-scores were divided into low and high cat-

egories at the score of 27.91721 for overall survival (time from surgery to death or censoring) and disease-free survival (time from

surgery to first recurrence or censoring, excluding patients with M1 stage at surgery). PDK4 H-scores were divided into low and

high categories at the score of 19.41508 for overall survival (time from surgery to death or censoring) and 34.05692 for disease-

free survival (time from surgery to first recurrence or censoring, excluding patients with distant metastatic diseases at surgery). These

cutoff values were determined by using the maximum chi-square value for all score values between the 25th and 75th percentile as

described previously.51 PDK4 high/low and TBX3 high/low was included in all multivariable models. As a double check on the direc-

tion of the hazard ratio and as a more powerful test if the H-score effect was truly linear, we also fit multivariable models with the H-

score as continuous.

We conducted subgroup analyses on overall survival using the ER-positive subgroup, endocrine therapy group, ER-positive on

endocrine therapy, ER-negative, and ER+/PR+/HER2-. First, log-rank tests were done with the dichotomous H-score variable. Sec-

ond, multivariable models with the H-score as dichotomous and then continuous were fit similar as was done in the main analyses.

Analyses were conducted using SAS Version 9.4. An a level of 5% was used to determine statistical significance.
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