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Abstract
Breast cancer is the second leading cause of cancer mortality among women. Mammography and tumor biopsy followed
by histopathological analysis are the current methods to diagnose breast cancer. Mammography does not detect all breast
tumor subtypes, especially those that arise in younger women or women with dense breast tissue, and are more aggressive.
There is an urgent need to find circulating prognostic molecules and liquid biopsy methods for breast cancer diagnosis and
reducing the mortality rate. In this study, we systematically evaluated metabolites and proteins in blood to develop a
pipeline to identify potential circulating biomarkers for breast cancer risk. Our aim is to identify a group of molecules to be
used in the design of portable and low-cost biomarker detection devices. We obtained plasma samples from women who
are cancer free (healthy) and women who were cancer free at the time of blood collection but developed breast cancer later
(susceptible). We extracted potential prognostic biomarkers for breast cancer risk from plasma metabolomics and prote-
omics data using statistical and discriminative power analyses. We pre-processed the data to ensure the quality of subse-
quent analyses, and used two main feature selection methods to determine the importance of each molecule. After further
feature elimination based on pairwise dependencies, we measured the performance of logistic regression classifier on the
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remaining molecules and compared their biological relevance. We identified six signatures that predicted breast cancer risk
with different specificity and selectivity. The best performing signature had 13 factors. We validated the difference in level
of one of the biomarkers, SCF/KITLG, in plasma from healthy and susceptible individuals. These biomarkers will be used
to develop low-cost liquid biopsy methods toward early identification of breast cancer risk and hence decreased mortality.
Our findings provide the knowledge basis needed to proceed in this direction.

Keywords Liquid biopsy . Breast cancer risk . Circulating biomarker .Machine learning . Feature selection

Abbreviations
ERα Estrogen receptor alpha
PgR Progesterone receptor
HER2 Human epidermal growth factor receptor
(BRCA1 and 2) Breast cancer susceptibility 1 and 2
CTCs Circulating tumor cells
ctDNA Circulating tumor DNA
IRB Institutional review board
UIUC University of Illinois, Urbana-Champaign
GC/MS Gas chromatography–mass spectrometry
AUC Area under curve
ROC Receiver operator characteristic
pCC Pearson’s correlation coefficient
LR Logistic regression
ELISA Enzyme-linked immunosorbent assay
SCF/KITLG Stem cell factor/KIT ligand
HRP Horseradish peroxidase
DNA Deoxyribonucleic acid
RNA Ribonucleic acid
BMI Body mass index

Background

Breast cancer is the second leading cause of death among
adult women. According to World Health Organization,
there is a sharp rise in overall number of breast cancer
incidences worldwide due to changes in lifestyle, repro-
ductive factors, and increased life expectancy [1]. Fifty
eight percent of all breast cancer–related deaths occur in
middle- and low-income countries. While survival rates for
breast cancer are around 80% in developed countries, this
rate decreases to 60% in middle-income and to 40% in
low-income countries due to lack of early detection pro-
grams leading to diagnoses in late stages, where 80% of
these tumors are incurable [2, 3]. In the middle- and low-
income countries, mammography and other expensive and
technologically complicated methods are unattainable due
to high costs and shortage of trained personnel [4, 5].
Moreover, mammograms are more likely to detect ER-
positive breast cancer [6] and are not recommended for
younger women. In addition, diagnosis at an earlier stage
using conventional procedures is not prognostic for all race
groups, for example, the probability of an African-

American woman with small-sized tumors presenting with
metastasis is higher than that of a Caucasian woman [7].
Thus, there is a critical need for affordable, portable, and
accurate means of detecting breast cancer risk before the
tumors arise. Development of such technologies has the
potential to expedite the solution for the growing health
problem to prevent increasing death and disability among
women especially in low- and middle-income countries.

Currently, a handful of biomarkers are used in the clinic
for breast cancer diagnosis. These biomarkers are proteins
overexpressed in certain subtypes of breast tumors and
help clinicians plan treatment. Up to date, a limited number
of breast cancer biomarkers demonstrated clinical utility,
including estrogen receptor alpha (ERα), progesterone re-
ceptor (PgR) [8], and human epidermal growth factor re-
ceptor 2 (HER2) to predict effectiveness of systemic ther-
apy and the Oncotype DX-21 gene score to predict benefits
of chemotherapy [9–11]. Studies evaluating other predic-
tive biomarkers are in progress for breast cancer suscepti-
bility genes (BRCA1 and BRCA2) circulating tumor cells
(CTCs), HER2 (+), TOP2A (in subjects with HER2 over-
expression), and HER2 (when negative in tumors but pos-
itive in the CTCs) [12]. Circulating tumor DNA (ctDNA) is
increasingly used in the clinic, particularly for advanced
solid tumors [13–15]. However, clinical utility and validity
of ctDNA assays in early stage cancers is not as clear [15].
Further, we still lack reliable biomarkers to detect breast
cancer risk before the tumors arise. Lack of such bio-
markers hinders establishment of reliable screening or pre-
vention programs.

To address this critical need, we systematically evaluat-
ed metabolites and proteins in plasma to identify potential
biomarkers for breast cancer risk that can be utilized to
develop minimally invasive, affordable, portable, and ac-
curate screening devices. In this study, our focus is on
liquid biopsy samples from plasma that have the potential
to provide simple and minimally invasive information for
diagnostic decisions. We developed an efficient pipeline to
analyze liquid biopsy samples, to detect blood biomarkers,
and to identify the risk for breast cancer before tumors
arise. This pipeline paves the way toward developing the
aforementioned screening devices to be used in the field by
bas ic - leve l hea l thcare workers in low-resource
environments.
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Methods

Patients and Plasma Samples

All studies were approved by the Indiana University Institutional
Review Board (IRB protocol number 1011003097). All research
was carried out in compliance with the Helsinki Declaration.
Donors provided broad written consent for the use of their spec-
imens in research. The written consent document informed the
donor that the donated specimens and medical data would be
used for the general purpose of helping to determine how breast
cancer develops. It was explained in the written consent that the
exact laboratory experiments were unknown at the time of dona-
tion, and that proposals for use of the specimens would be
reviewed and approved by a panel of independent researchers
before specimens and/or data were released for research pur-
poses. Hematoxylin and eosin–stained sections of the FFPE tis-
sue of the identified donors were reviewed by a pathologist to
confirm the absence of histological abnormalities. In order to
exclude or control confounding variables such as age, racial
and ethnic background, and menopausal status, the subjects in
the two cohorts, susceptible and healthy controls, were matched
by selection of the comparison group (healthy controls) with
respect to the distribution of the aforementioned confounders in
susceptible group.

Plasma Preparation

Blood was drawn into the Plasma Separator tube (Vacutainer
Venous Blood Collection Tubes; SST* Plasma Separation
Tube, Fisher Scientific cat. #0268396) and gently mixed by
inverting the tube five times. Forty-five minutes (±10 min)
after the blood had been drawn, the Plasma Separator Tube
was placed into a minicentrifuge (Eppendorf centrifuge 5702)
and centrifuged at 1200 rcf for 10 min at room temperature. A
repeater pipette was used to aliquot 600 μl of the plasma into
each of five cryogenic vials. Samples were stored at − 80 °C
until use.

OLINK Protein Biomarker and Whole Metabolite Profiling
Assays

All the samples from human studies were handled and ana-
lyzed in accordance with UIUC IRB protocol #06741 and as
previously described [16]. Ten microliters of plasma samples
from Komen Tissue Bank was submitted to OLINK biosci-
ences for cancer and inflammation biomarker analysis. In to-
tal, 50 μl of plasma samples was submitted to the
Metabolomics Center at UIUC. GC/MS whole metabolite
profiling was performed to detect and quantify the metabolites
by using gas chromatography–mass spectrometry (GC/MS)
analysis. Metabolites were extracted from 50 μl of plasma
according to Agilent Inc. application notes. Hentriacontanoic

acid was added to each sample as the internal standard prior to
derivatization. Metabolite profiles were acquired using an
Agilent GC/MS system (Agilent 7890 gas chromatograph,
an Agilent 5975 MSD, and an HP 7683B autosampler). The
spectra of all chromatogram peaks were evaluated using the
AMDIS 2.71 and a custom-built database with 460 unique
metabolites. All known artificial peaks were identified and
removed prior to data analysis. To allow the comparison be-
tween samples, all data were normalized to the internal stan-
dard in each chromatogram.

Statistical Analysis

Preprocessing of Measurements

We normalized all individuals’ plasma data in each dataset
with respect to the healthy individuals’ data in the respective
dataset to factor out potential differences in data acquisition.
More specifically, we performed the following procedure sep-
arately for both datasets. For each molecule in a dataset, we
subtracted the mean measurement of that molecule in healthy
individuals from all individuals’ measurements and divided
this difference by the standard deviation of that molecule’s
measurements in healthy individuals. Thus, we converted
each single measurement to a z-score which describes the
deviation of that measurement from the mean of healthy indi-
viduals’, in terms of the standard deviation among healthy
individuals. As the final step, we merged two datasets, which
were normalized with respect to their own healthy individuals,
and obtained a dataset with 49 susceptible and 47 healthy
individuals.

Molecule Ranking, Elimination, and Performance Assessment

A two-stage procedure is applied to identify the molecule sets
with high discriminative power between the healthy and the
susceptible groups. The first stage involves ranking all mole-
cules with respect to their individual discriminative powers
(importance ranking). The second stage involves molecule
elimination (selection) based on their interdependencies.

To independently assess each of 181 molecules, we used
two different methods. In the first method, we applied
Student’s t test to test the null hypothesis that the measure-
ments in the two groups come from the same distribution.
All molecules were ranked based on the corresponding p-
values to get a short-list of the top-ranking 20 molecules
with the lowest p values, discarding the others from further
processing. In the second method, we applied the random
forest algorithm to assess the discriminative power of each
of the 181 molecules individually by using the mean de-
crease impurity (Gini importance), which is defined as the
mean decrease in node impurity over all the trees in the
forest. This time, all molecules were ranked based on their
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Gini importance values to get the top-ranking 20 molecules
with the highest importance values. No further threshold
was applied to these top-ranking molecules at this stage for
both methods, as the low-ranking molecules in these lists
may potentially have significant marginal contribution to a
subset of molecules when used together.

To generate an optimum subset of the top 20 molecules
identified by Student’s t test or random forest, we used the
following iterative procedure. We initialized a “selected mol-
ecules” list (S-list) with the top-ranking molecule and an “un-
selected molecules” list (U-list) with the remaining 19 ranked
molecules. We iteratively assessed the individual molecules in
the U-list with respect to the molecules set represented by the
S-list and added the ones that have a positive contribution to
the S-list while discarding the others. Three different ap-
proaches are applied to assess whether a molecule has a pos-
itive contribution to the S-list: (1) Manual selection: Logistic
Regression (LR) classifiers, to identify healthy and susceptible
groups, are trained and tested iteratively by using the selected
molecules (S-list) and the top-ranking unselected molecule
(U-list) as the features. The classifier performance is assessed
using the selectedmolecules’AUC (area under curve) of ROC
(receiver operator characteristic) curves. After each iteration,
if the AUC is increased, the top-ranking unselected molecule

is added to the S-list, otherwise discarded. The iterations stop
when the U-list is exhausted. (2) Paired t test: The inter-
molecule dependencies, as measured by the paired t test, is
used to select the molecules from the U-list to be added to the
S-list. We first computed the paired t test p values for each pair
of molecules among the aforementioned top-ranking 20 mol-
ecules with the null hypothesis being that both come from the
same distribution. Using these p values, we iteratively
discarded the molecules from the U-list that have a p value
larger than 0.05 when tested with anyone of the molecules
from the S-list and moved the unselected molecule from U-
list to S-list with the lowest maximum p value (< 0.05) when
tested with the selected molecules. The iterations stop when
the U-list is exhausted. (3) Correlation analysis: The second
approach described above is repeated by replacing the null
hypothesis testing with the correlation analysis as measured
by Pearson’s correlation coefficient (pCC). We used 0.5 as the
pCC threshold.

Finally, we performed LR classification (4-fold cross-
validation with 500 iterations) using the top-ranking N mole-
cules in each list, where N runs from one to the length of the
corresponding list. Of note, use of LR for performance assess-
ment of classification at this last step is distinct from the earlier
use of LR for manual selection of the molecules.

Table 5 Ranking of molecules identified by initial Student’s t test for each consequent feature elimination method

Rank Student’s t test Manual selection by LR Correlation analysis Paired t test

1 SCF SCF SCF SCF

2 MAD HOMOLOG 5 MAD HOMOLOG 5 MAD HOMOLOG 5 FGF-5

3 FGF-5 FGF-5 FGF-5

4 FASLG FASLG FASLG

5 MMP-10 MMP-10 PPY

6 PPY XPNPEP2 XPNPEP2

7 XPNPEP2 FGF-21 FGF-21

8 FGF-21 CXL17 MCP-3

9 CXL17 MCP-3 FGF-BP1

10 MCP-3 ESM-1 C15:0

11 ESM-1 TNFB

12 HK11 CTSV

13 TRAIL CD160

14 FGF-BP1

15 EN-RAGE

16 C15:0

17 TNFB

18 CTSV

19 ADA

20 CD160

The “Student’s t test” column lists the top-ranking most discriminative 20 molecules among 181 molecules. The “Manual selection by LR,” “Paired t
test,” and “Correlation analysis” columns list the molecules selected from these 20 top molecules by applying the iterative molecule elimination
procedures using manual selection by LR based on classification performance, paired t test, and correlation analysis, respectively, as described in
“Statistical Analysis” section
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SCF/KITLG Quantification Using Enzyme-Linked
Immunosorbent Assay (ELISA)

Plasma samples from both groups were collected and stored at
− 80 °C until the time of assay.We used an ELISA kit for SCF/
KITLG (Sigma, catalog no. RAB0330). Samples were diluted
2-fold per suggestion from the manufacturer. For the SCF/
KITLG antibody, concentrate was diluted 100-fold with 1×
diluent buffer. To prepare the HRP–streptavidin concentrate,
the vial was spun and diluted 400 times with 1× diluent buffer.
A 50 ng/ml stock solution was used to make the standard
curve: 2000 pg/ml, 666.7 pg/ml, 222.2 pg/ml, 74.07 pg/ml,
24.69 pg/ml, 8.23 pg/ml, and 2.74 pg/ml for SCF/KITLG. The
human SCF/KITLG antibody-precoated ELISA wells were
filled with 100 μl of either serially diluted standard protein
or plasma samples. After 2.5 h of incubation with gentle shak-
ing at room temperature, 100 μl of 1× SCF/KITLG biotinyl-
ated detection antibody was added to the wells. After 1-h
incubation with shaking at room temperature, the solution
was discarded and the wells were washed four times using
300 μl wash buffer solution. Final wash was aspirated and
plates were inverted to remove any remaining buffer. Then,
100 μl of prepared HRP–streptavidin solution was added to
each well and incubated for 45 min at room temperature with

gentle shaking. The solution was discarded and washed four
times as described previously. Then 100 μl of ELISA colori-
metric TMB reagent was added to each well and incubated for
30 min at room temperature in the dark. After this, 50 μl of
stop solution was added to each well. Immediately after color
development, the OD values were measured at 450 nm using
Cytation 5 Cell Imaging Multi-Mode Reader (Biotek) and
SCF/KITLG concentrations were calculated from specific cal-
ibration curves prepared with known standard solutions.
Diluent buffer served as blank and the OD of these wells
was subtracted from the values.

Results

Identification of Circulating Factor Signatures
for Future Breast Cancer Risk Assessment

Because we wanted to identify circulating factors that might
indicate future breast cancer risk, we utilized plasma samples
from a cohort of healthy controls (healthy) and individuals
who were clinically healthy at the time of plasma collection
but later had a diagnosis of breast cancer (susceptible). We
analyzed plasma samples using whole metabolite profiling

Table 6 Ranking of molecules identified by initial random forest method for each consequent feature elimination method

Rank Random forest Manual selection by LR Correlation analysis Paired t test

1 SCF SCF SCF SCF

2 MAD HOMOLOG 5 MAD HOMOLOG 5 MAD HOMOLOG 5 PPY

3 PPY PPY PPY

4 FASLG FASLG FASLG

5 FGF-5 FGF-5 FGF-5

6 CXCL1 MMP-10 CXCL1

7 MMP-10 XPNPEP2 XPNPEP2

8 XPNPEP2 ESM-1 PHOSPHORIC ACID

9 ESM-1 FLT3L TLR3

10 PHOSPHORIC ACID HK14 CD27

11 PD-L1 FGF-BP1

12 EPHA2

13 FLT3L

14 4E-BP1

15 TRAIL

16 MCP-1

17 TLR3

18 CD27

19 FGF-BP1

20 HK14

The “Random forest” column lists the top-ranking most discriminative 20 molecules among 181 molecules. The “Manual selection by LR,” “Paired t
test,” and “Correlation analysis” columns list the molecules selected from these 20 top molecules by applying the iterative molecule elimination
procedures using manual selection by LR based on classification performance, paired t test, and correlation analysis, respectively, as described in
“Statistical Analysis” section
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and OLINK biomarker analysis for a panel of inflammation
and cancer-related proteins. We used two different sample
sets, one with 39 susceptible and 36 healthy and the other with
10 susceptible and 11 healthy individuals, which were collect-
ed at different times. In the first set, 22 out of 39 susceptible
and 23 out of 36 healthy individuals were postmenopausal
status and remaining ones were premenopausal. In the second
dataset, 7 out of 10 susceptible and 8 out of 11 healthy

individuals were postmenopausal status and the remaining
ones were premenopausal. Average time to diagnosis was
3.7 years after sample donation (median is 4 years). Data from
two datasets were pre-processed separately because they were
acquired at different times and were expected to have a vari-
ation due to external factors. Plasma levels of 295 different
molecules for the first dataset and 339 different molecules for
the second dataset were detected for the individuals. Some
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molecules had missing values (were not detected by metabo-
lomics or OLINK approach) for some individuals, and further,
some molecules were not measured for both datasets. All
these molecules were excluded from the analysis. Therefore,
we analyzed 181 different molecules, consisting of metabo-
lites and proteins, which have plasma level values for every
subject in both datasets.

In order to generate an inclusive list of features that would
best discriminate between healthy and susceptible individuals,
we took a stepwise approach where we first screened all mol-
ecules that contribute to increased classifier performance (LR)
and then iteratively eliminate the redundant ones for both top-
ranking molecule lists obtained by either of the initial mole-
cule selection methods. We initially selected two different
groups of 20 molecules (out of 181 molecules) using
Student’s t test and random forest (600 trees) methods to rank
all 181 molecules with respect to their (healthy versus suscep-
tible) discriminative power. Top-ranking 20 molecule sets ob-
tained by two different feature selection methods, Student’s t
test and random forest, contain 10 common molecules, highly
concentrated in the upper halves of the lists. For example, four
out of five top-ranking molecules are common in both
datasets. To assess the pairwise dependencies among the most
discriminative 20 molecules and further reduce the number of

features in our lists, we used the paired t test (Table 1—
Student’s t test, Table 2—random forest) or pairwise correla-
tion analysis (Table 3—Student’s t test, Table 4—random for-
est). To ensure that all molecules that might positively con-
tribute to classifier performance are included in the signature,
we performed logistic regression. Finally, to eliminate redun-
dant molecules, we utilized paired t test p values (p > 0.05)
and/or correlation coefficients (pCC > 0.5) to discard one of
the molecules in that pair. Our approach resulted in six mole-
cule signatures (Table 5—Student’s t test, Table 6—random
forest).

Assessment of Classification Performances
of Molecule Signatures Using Machine-Learning
Approach

In order to test the classification performance of each mole-
cule signature, we performed LR classification using the mol-
ecules indicated in Tables 5 and 6. Of note, use of LR for
performance assessment of classification at the last step is
distinct from the earlier use of LR for manual selection of
the molecules. Our top 20 feature list generated by Student’s
t test contained MMP-10, MCP-3, SCF/KITLG, TRAIL, EN-
RAGE, MAD HOMOLOG 5 (SMAD5), CXL17, HK11,
FGF-BP1, XPNPEP2, C15:0 (pentadecanoic acid), PPY,
FGF-5, FGF-21, ESM-1, FASLG, CD160, TNFB, CTSV,
and ADA (Fig. 1a). Unsupervised clustering of the data using
this list of molecules separated healthy and susceptible indi-
viduals; only two healthy individuals were classified with sus-
ceptible individuals and only one individual was classified
together with healthy individuals (Fig. 1a). This list without
any further feature elimination achieved AUC value of 0.83
(Fig. 1b). Reduction of feature number to 13 using manual
selection increased AUC value to 0.85 ± 0.04 (Fig. 1c).
Further reduction of feature using correlation analysis
(Fig. 1d; AUC = 0.78 ± 0.04) or paired t test (Fig. 1e;
AUC = 0.69 ± 0.03). On the other hand, AUC values achieved
by molecule signatures using random forest had lower perfor-
mance (Fig. 2). This list contained XPNPEP2, phosphoric
acid, FGF-BP1, MAD HOMOLOG 5, ESM-1, SCF/KITLG,
TRAIL, PD-L1, FLT3L, 4E-BP1, MCP-1, PPY, FGF-5,
FASLG, MMP-10, EPHA2, CD27, CXCL1, HK14, and
TLR3 (Fig. 2a). Unsupervised clustering of the data using this
list of molecules was less successful in separating healthy and
susceptible individuals; 10 susceptible individuals were clas-
sified with healthy individuals (Fig. 2a). Using all 20 factors
achieved AUC of 0.80 ± 0.05 (Fig. 2b). Reducing the mole-
cule number to 10 using manual selection (Fig. 2c, AUC =
0.80 ± 0.04), to 11 using correlation analysis (Fig. 2d, AUC =
0.76 ± 0.05), or to 2 using paired t test (Fig. 2e, AUC = 0.67 ±
0.04) did not improve the AUC values. To sum up, initial
feature selection using Student’s t test followed by manual
selection using LR gave us the best performing list of 13

�Fig. 1 Identification and performance assessment of circulating factor
signatures for future breast cancer risk assessment using Student’s t test
as initial feature selection method. (a) Levels of top 20 molecules
identified by Student’s t test in 47 healthy (red) and 49 susceptible
(green) individuals using OLINK analysis. Z-Scores were not log
transformed or centered. Unsupervised hierarchical clustering was
performed using Cluster 3 software for Z-scores of molecule
concentrations with uncentered correlation as similarity metric and
average linkage as clustering method. Data are visualized using Java
Tree view software. In the lower panel, each column represents an
individual and each row represents a molecule, with elevated levels in
red, reduced levels in blue, andmean control levels in white. Bar indicates
the coloring for Z-scores of molecule concentrations. (b) LR
classification performances (AUC values) using the top-ranking N (1–
20) molecules, ranked by their p values in Table 5, and the ROC curves of
every AUC value where the bold black line indicates ROC curve of the
best-performing (the highest AUC value) molecule set. (c) LR
classification performances (AUC values) using the top-ranking N (1–
13) molecules selected manually by considering the LR classification
performance given in (b) and the ROC curves of every AUC value
where the bold black line indicates ROC curve of the best-performing
(the highest AUC value) molecule set. (d) LR classification performances
(AUC values) using the top-ranking molecules selected from the list of 20
molecules, ranked by Student’s t test in Table 5, by iterative elimination
using pairwise Pearson correlation coefficients of features in Table 3
(|pCC| = 0.5 is the significance threshold). The ROC curves of every
AUC value where the bold black line indicates ROC curve of the best-
performing (the highest AUC value) molecule set. (e) LR classification
performances (AUC values) using the top-ranking N (1–2) molecules
selected from the list of 20 molecules, ranked by Student’s t test in
Table 5, by iterative elimination using paired t-test p values of features
in Table 1 (p = 0.05 is the significance threshold). The ROC curves of
every AUC value where the bold black line indicates ROC curve of the
best-performing (the highest AUC value) molecule set
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circulating molecules from plasma for differentiating between
healthy and susceptible individuals.

Biological Relevance of Biomarkers

Our best-performing list contained SCF/KITLG, MMP-10,
MAD HOMOLOG5, CXL17, MCP-3, FGF05, FASLG,
CD160, TNFB, ESM-1, FGF-21, XPNPEP2, and CTSV
(Fig. 3a). In order to increase our understanding of molecules
in the best-performing molecule list. Unsupervised clustering

of the data using this list of molecules separated healthy and
susceptible individuals accurately (Fig. 3a). To delve further
into direction of change in the plasma levels of identified
molecules, we compared the level of individual molecules in
healthy versus susceptible individuals. Six of the 13 mole-
cules, including SCF/KITLG, MAD HOMOLOG 5,
FASLG, MMP-10, XPNPEP2, and CXL17, were statistically
significantly different between the two groups (Fig. 3b). Since
our aim was to identify the molecules that have marginal but
significant contribution to the classification task when used
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together with other molecules, even if they have weak dis-
criminative power on their own, we still included these mol-
ecules with poor t-test performance individually, p value >
0.05, or low random forest importance in the final lists. We
were particularly interested in SCF/KITLG as this molecule
was the top molecule identified in both feature selection
methods (Tables 5 and 6). Overall, SCF/KITLG levels were
lower in individuals with increased breast cancer risk
(Fig. 3c). We also validated our finding from OLINK analysis
using another independent method, ELISA analysis, and ver-
ified that the level of this protein is lower in susceptible indi-
viduals (Fig. 3b).

Discussion

In this study, we developed a pipeline to identify plasma bio-
markers of breast cancer risk using a combination of classical
statistics methods and machine-learning approaches, and in-
dependently validated one of the identified biomarkers, SCF/
KITLG. By iterative feature selection, elimination, and perfor-
mance testing, we generated a molecular signature of plasma
biomarkers that can discriminate between healthy and breast

cancer–susceptible individuals. Because of our approach,
some of the molecules in this signature had weak discrimina-
tive power on their own, yet they contributed significantly to
the discriminative power of the signature.

A biomarker is a biomolecule such as DNA, RNA, pro-
teins, hormones, and chemical modifications that can be mea-
sured to describe that an abnormal or a normal process is
taking place within the organism [12]. A cancer biomarker
can arise due to changes in the DNA (mutations), rearrange-
ments, deletions (missing copies), or amplifications.
Biomarkers might affect various hallmarks of cancer includ-
ing cell cycle, cell death, or immunological properties of the
tumor and indicate the risk of developing cancer, its progres-
sion, and response to therapy [8, 9, 12].

Previously, Kazarian et al. studied pre-diagnostic samples
from the UK Collaborative Trial of Ovarian Cancer Screening
(UKCTOCS). Serum samples were taken from 239 women
who were diagnosed with invasive ductal carcinoma in breast,
months to years after sample donation [17]. These patients
were post-menopausal women with ages ranging from 50 to
74, who were healthy cases at the moment of recruitment but
later developed breast cancer. Hence, this group studied the
ability of several serum markers to detect breast cancer cases
before these patients were diagnosed. They studied CA 15-3,
RANTES/CCL5, OPN, PAI-1, SLP1, HSP90A, IGFBP3,
APOC1, and PAPPA. They concluded that only three out of
the nine serum markers (CA 15-3, PAI1, and HSP90A) were
potential prognostic biomarkers [17]. Those analyses were
performed using a limited panel of proteins. However, in our
analysis, we characterized more than 300 proteins and metab-
olites in plasma and used a final list of 181 molecules to
generate our signatures.

One potential marker of interest we identified is SCF/
KITLG protein. KITLG protein is expressed in 53% of breast
cancer cell lines [18]. SCF/KITLG was shown to have a pro-
liferative role in BCK4 cells, and when it is reduced, it de-
creased estrogen-induced proliferation [19]. We identified a
lower level of this biomarker in plasma from women with
breast cancer risk. Since at the time of the blood draw the
women did not have tumors, it is not possible for us to infer
the level of this protein in the tumor.Whether SCF plays a role
in the induction of breast tumors or lower plasma levels of this
protein contributes to the tumor biology needs to be
determined.

Several of the molecules in our signature were also impli-
cated in cancer biology. For example, MAD HOMOLOG5/
SMAD5 plays a role in breast cancer cell stemness and resis-
tance to chemotherapy [20, 21]. FGF-5, FASLG, CTSV, and
ESM-1 expression is associated with lower survival and worst
outcomes [22–27]. MMP-10 affects angiogenesis and apopto-
sis [28, 29]; XPNPEP2 is overexpressed in cervical cancer
patients and increases motility and invasiveness of tumors
[30]. FGF-21, TNFB contributes to metastatic potential of

�Fig. 2 Identification and performance assessment of circulating factor
signatures for future breast cancer risk assessment using random forest
as initial feature selection method. (a) Levels of top 20 molecules
identified by random forest method in 47 healthy (red) and 49
susceptible (green) individuals using OLINK analysis. Z-Scores were
not log transformed or centered. Unsupervised hierarchical clustering
was performed using Cluster 3 software for Z-scores of molecule
concentrations with uncentered correlation as similarity metric and
average linkage as clustering method. Data are visualized using Java
Tree view software. In the lower panel, each column represents an
individual and each row represents a molecule, with elevated levels in
red, reduced levels in blue, andmean control levels in white. Bar indicates
the coloring for Z-scores of molecule concentrations. (b) LR
classification performances (AUC values) using the top-ranking N (1–
20) molecules, ranked by their feature importance values (computed by
random forest) in Table 6, and the ROC curves of every AUCvalue where
the bold black line indicates ROC curve of the best-performing (the
highest AUC value) molecule set. (c) LR classification performances
(AUC values) using the top-ranking molecules selected manually by
considering the LR classification performance given in (b) and the
ROC curves of every AUC value where the bold black line indicates
ROC curve of the best-performing (the highest AUC value) molecule
set. (d) LR classification performances (AUC values) using the top-
ranking N (1–11) molecules selected from the list of 20 molecules,
ranked by random forest in Table 6, by iterative elimination using
pairwise Pearson correlation coefficients of features in Table 4 (|pCC| =
0.5 is the significance threshold). The ROC curves of every AUC value
where the bold black line indicates ROC curve of the best-performing (the
highest AUC value) molecule set. (e) LR classification performances
(AUC values) using the top-ranking N (1–2) molecules selected from
the list of 20 molecules, ranked by random forest in Table 6, by
iterative elimination using paired t-test p values of features in Table 2
(p = 0.05 is the significance threshold). The ROC curves of every AUC
value where the bold black line indicates ROC curve of the best-
performing (the highest AUC value) molecule set
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breast cancer cells [31, 32]. CXL17 [33], MCP-3 [34], and
CD160 [35] play a role in recruitment of immune cells.
TNFB/LTA polymorphisms increased the cancer risk in vari-
ous populations [36, 37]. All these studies focused on the
tumors or patients that already have cancers. The impact of
proteins in our signature on breast cancer risk and initiation
remains to be established. Direction of differences in the plas-
ma levels of these proteins between healthy and susceptible
individuals might be different fromwhat is reported in already
established tumors and might indicate a different role for these
proteins at early stages of tumor development.

More recently, liquid biopsy methods supported with
machine-learning approaches have been used for the detection
of different cancer types [15, 38, 39]. For example, Cohen
et al. recently demonstrated the capability of detecting eight
different cancer types including breast cancer using circulating
tumor DNA (ctDNA) and protein biomarkers [40]. They re-
ported remarkable sensitivity values > 95% for ovarian and
liver cancers. However, the reported sensitivity for breast can-
cer is rather low at 33%. The novelty of our study is identify-
ing circulating molecules that are associated with future can-
cer risk and developing a pipeline to utilize these markers in
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generation of biosensors based on our previous work to detect
breast cancer risk [41].

We used a combination of various statistical analysis
methods to identify biomarkers. Although Student’s t test
and/or random forest gives some information about the ability
of a biomarker to discriminate between healthy and suscepti-
ble patients, it alone is not sufficient. To identify the bio-
markers with high classification performance, we applied lo-
gistic regression. Area under curve (AUC) of receiver operat-
ing characteristic (ROC) curves resulting from the classifica-
tion operations on these biomarkers is commonly used as an
indicator for the discriminative capacity of a single molecule
or a set of molecules. Previously, logistic regression was per-
formed on predictors consisting of serum levels of several
molecules, but authors did not report any confidence interval
for that AUC value and did not split the data into training and
test sets [42]. In another study, authors used Student’ t test and
its non-parametric equivalence (Mann–WhitneyU test) to find
potential biomarkers, but the lower bound of their reported
confidence intervals was dramatically low, suggesting that
those biomarkers were not robust, and they also did not split
the training and test sets [43]. Several other studies have also
used these methods to identify potential biomarkers but have
not utilized a training–set split for their datasets [17, 44–46].
Training (model building) and testing on the same dataset is
not an ideal practice in machine learning as the model is likely
to over-fit to the data. This approach results in artificially high
predictive rates, in other words, low generalizability, which

refers to poor applicability of the model to unseen data. The
cross-validation that we employed in this study is a common
approach to circumvent the problem of overfitting.

Conclusion

We identified biomarkers of breast cancer risk using metabo-
lomics and protein profiling in plasma samples from healthy
and susceptible individuals. Future studies are required to val-
idate these markers in bigger data sets, to determine their role
in breast tumorigenesis, develop liquid biopsy/biosensor-
based approaches, and move this information to clinic for
early identification of breast cancer risk. In addition, further
molecular studies in cell lines and animal models are required
to show conclusively whether or not each or a combination of
these markers can be utilized as indicators of breast cancer risk
without having observable effects on breast cancer cells or can
have other roles at the earlier stages of carcinogenesis.
Overall, our analysis offers novel plasma biomarkers for fur-
ther validation and functional characterization.
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�Fig. 3 Validation of biomarker identification. (a) Levels of 13 molecules
identified by Student’s t test followed by manual selection in 47 healthy
(red) and 49 susceptible (green) individuals using OLINK analysis. Z-
Scores were not log transformed or centered. Unsupervised hierarchical
clustering was performed using Cluster 3 software for Z-scores of
molecule concentrations with uncentered correlation as similarity metric
and average linkage as clustering method. Data are visualized using Java
Tree view software. In the lower panel, each column represents an
individual and each row represents a molecule, with elevated levels in
red, reduced levels in blue, andmean control levels in white. Bar indicates
the coloring for Z-scores of molecule concentrations. (b) Changes in the
levels of 12 of 13 signature molecules in 47 healthy and 49 susceptible
individuals. Anderson–Darling and Kolmogorov–Smirnov tests for
normality were used. If the dataset did not pass the normality test, non-
parametricMann–WhitneyU test was used to assess if level of a molecule
is statistically significantly different in plasma from healthy versus
susceptible individuals (molecules with *). Otherwise, unpaired t test
was used to assess if level of a molecule is statistically significantly
different in plasma from healthy versus susceptible individuals. All data
points are plotted. P values are indicted on the graphs. (c) Level of SCF/
KITLG in 47 healthy and 49 susceptible individuals. Anderson–Darling
and Kolmogorov–Smirnov tests for normality were used. Non-parametric
Mann–Whitney U test was used to assess if level of a molecule is
statistically significantly different in plasma from healthy versus
susceptible individuals. All data points are plotted (as histogram on the
left side and as box–whiskers graph on right side). P values are indicted
on the graph. (d) Results from (c) are independently validated using
ELISA using all the samples. Level of identified biomarkers in human
plasma samples were compared using unpaired t test. P value is reported
on the graph. Values from all the samples are presented
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