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We analyzed 3,872 common genetic variants across the ESR1 locus (encoding estrogen receptor a) in 118,816 subjects from 
three international consortia. We found evidence for at least five independent causal variants, each associated with different 
phenotype sets, including estrogen receptor (ER+ or ER−) and human ERBB2 (HER2+ or HER2−) tumor subtypes, mammographic 
density and tumor grade. The best candidate causal variants for ER− tumors lie in four separate enhancer elements, and their risk 
alleles reduce expression of ESR1, RMND1 and CCDC170, whereas the risk alleles of the strongest candidates for the remaining 
independent causal variant disrupt a silencer element and putatively increase ESR1 and RMND1 expression.

(P < 1 × 10−4) were initially included in forward stepwise logistic 
regression models for ER− and ER+ breast tumor risk. The most parsi-
monious models (Online Methods) included four SNPs for ER− breast 
cancer and four SNPs for ER+ breast cancer, with three SNPs being 
common to both models. In each model, all selected SNPs fell into a 
subset of five bins of correlated SNPs (r2 >0.8). Stepwise regression 
models were independently fitted to breast cancer risk in the CIMBA 
BRCA1 mutation carriers and to mammographic density (measured as 
mammographic dense area; see the Online Methods for full details). 
For the BRCA1 mutation carriers and for mammographic dense 
areas, the SNPs in the best fitting models also fell within a subset of 
the five originally defined bins. For further analyses, we selected the 
directly genotyped SNP that was most significantly associated with 
the predominant phenotype for that bin. Regression analyses were 
repeated using just these five SNPs, with each representing an inde-
pendent signal7. Results are presented in Table 1. Additionally, in the 
BCAC studies, we were able to examine SNP associations with risks of  
HER2 (HER2+ and HER2−) and progesterone receptor (PR+ and 
PR−) tumor subtypes and with tumor grade at diagnosis. There were 
weak but detectable correlations between the representative SNPs for  
signals 1–4 (Table 1 and Supplementary Table 2). We therefore  
modeled the associations with each SNP conditional on the other 
four; these conditional risk estimates and significance levels are also 
presented in Table 1. At conditional significance levels of P < 1 × 10−3, 
four of the lead SNPs (signals 1, 2, 4 and 5) were independently asso-
ciated with risk of developing ER− breast cancer (Table 1). Another, 
partially overlapping, set of four SNPs (signals 1–3 and 5) was asso-
ciated with ER+ tumor risk (Table 2 and Supplementary Table 3), 
and another subset of SNPs (signals 1–4) was associated with breast 
cancer risk in BRCA1 mutation carriers (Table 1). The per-allele odds 
ratios were higher for ER− than for ER+ disease for three lead SNPs 
(signals 1, 2 and 5), whereas representative SNPs for signal 3 displayed 
smaller effects of similar magnitude on risk for ER− and ER+ tumors. 
Mammographic dense area was associated with representative SNPs 
from signal 2 and less strongly with those from signal 1 (Table 1). 
We additionally carried out a meta-analysis of the SNP associations 
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SNPs at 6q25.1 have been reported to be associated with breast cancer 
susceptibility in genome-wide association studies (GWAS) in women 
of Chinese1 and European2 ancestry. Subsequent analyses have demon-
strated that SNPs in the same region are associated with breast cancer 
risk for BRCA1 mutation carriers3 and mammographic density4, a strong 
breast cancer risk factor. Thus far, however, attempts to identify the can-
didate causal variant(s) underlying the associations have been inconclu-
sive3,5,6. Here we report fine-scale mapping and comprehensive analysis 
of the genotype-phenotype associations in this region, using dense geno-
typing and imputed data from the custom-designed iCOGS array, in 
118,816 subjects from three consortia: the Breast Cancer Association 
Consortium (BCAC), the Consortium of Investigators of Modifiers of 
BRCA1 and BRCA2 (CIMBA) and the Markers of Density Consortium 
(MODE). We additionally demonstrate, through functional analyses, the 
likely modes of action of the strongest candidate causal variants.

RESULTS
Genetic epidemiological studies
We successfully genotyped 902 SNPs across a 1-Mb region containing 
ESR1 in 50 case-control studies from populations of European (89,050 
participants) and Asian (12,893 participants) ancestry in BCAC, together 
with 15,252 BRCA1 mutation carriers in CIMBA. Mammographic den-
sity measures were available for 6,979 women from the BCAC studies 
and an additional 1,621 women from the MODE Consortium, who had 
also been genotyped using the iCOGS array. Subsequently, the geno-
types of additional variants with minor allele frequency (MAF) >2% 
were imputed in all European-ancestry participants, using data from the 
1000 Genomes Project as a reference. In total, data from 3,872 genotyped 
or imputed (imputation info score >0.3) SNPs were analyzed. Results for 
all SNPs associated with overall breast cancer risk (P < 1 × 10−4) are pre-
sented in Supplementary Table 1. Manhattan plots of the associations of 
these 3,872 SNPs with the main phenotypes are shown in Figure 1.

Conditional analyses
All genotyped and imputed SNPs displaying evidence of associa-
tion with overall breast cancer risk in women of European ancestry  
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with breast cancer risk for CIMBA BRCA1 mutation carriers and 
risk of ER− tumors in BCAC. We anticipated that this analysis would 
increase statistical power to detect ER− risk signals, and, indeed, it did 
strengthen the evidence for association of SNPs representing signals 
1–4 but not signal 5, which showed no association with breast cancer 
risk in BRCA1 mutation carriers (Table 1).

Tumor subtype and grade analyses
We next explored the associations of each signal with specific tumor 
subtype combinations and with tumor grade (Fig. 1f, Table 2 and 
Supplementary Tables 3–5). The representative SNPs at two signals  
(3 and 5) were strongly associated with high-grade disease, after adjust-
ing for ER status (P < 1 × 10−3; Table 2 (bottom line) and Supplementary 
Table 5). Among ER− tumors, three signals (1, 2 and 4) were associated 
with triple-negative (ER−PR−HER2−) and high-grade tumors, as well 
as the rarer ER−PR−HER2+ subtype, with similar odds ratios (Table 2  
and Supplementary Tables 3 and 5). However, signal 5 was more 
strongly associated with ER−PR−HER2+ disease (odds ratio (OR) = 1.24,  
95% confidence interval (CI) = 1.12–1.37; P = 2.4 × 10−5; Table 2)  
than with the triple-negative subtype (OR = 1.08, 95% CI = 1.01–1.15; 
P = 0.016; Table 2, case-only P = 0.021; Supplementary Table 5),  
consistent with the lack of association for breast cancer in BRCA1 muta-
tion carriers, in whom tumors are predominantly triple negative8.

Haplotype analysis
We next explored the combined effects of the same five signal- 
representative genotyped SNPs (Supplementary Table 6). Haplotype-
specific effects were consistent with additive effects of the individual 
signal-representative SNPs. In particular, haplotype 22221 (all minor 
alleles except for signal 5; frequency = 0.005) was associated with the 
largest increased risks of both ER+ (OR = 1.38, 95% CI = 1.11–1.71;  
P = 3.3 × 10−3) and ER− (OR = 2.34, 95% CI = 1.76–3.10; P = 3.5 × 10−9)  
tumors; this group includes the triple-negative (ER−PR−HER2−) 
tumor subtype (detected via the meta-analysis of BCAC subjects with 
ER− tumors and CIMBA BRCA1 mutation carriers; P = 8 × 10−10). 
Haplotype 22111 (frequency = 0.02) was associated with the highest 
risk of HER2+ tumors (OR = 1.5, 95% CI = 1.21–1.87; P = 3 × 10−4) 
and with mammographic dense area (β coefficient = 0.45, 95% CI = 
0.20 to 0.69; P = 3 × 10−4).

Associations in Asian-ancestry studies
We examined the associations of the five signal-representative  
SNPs in the nine Asian-ancestry studies in BCAC (Supplementary 
Table 7). All five displayed allelic associations in the same direction 
as in Europeans, with overlapping confidence intervals, consistent 
with the hypothesis that the same candidate causal variants determine 
risk in both populations.
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Figure 1  Association results for all SNPs with six phenotypes. (a–f) The phenotypes analyzed include risk of ER+ breast cancer in BCAC (a), risk of  
ER− breast cancer in BCAC (b), risk of triple-negative breast cancer, derived from the CIMBA meta-analysis of BRCA1 mutation carriers with ER− tumors (c), 
risk of HER2+ breast cancer in BCAC (d), mammographic dense area in MODE (e) and tumor grade after adjustment for ER status in BCAC (f). P values 
for each SNP (from unconditional logistic regression) are shown plotted as the negative log-transformed P value against relative position across the 
locus. A schematic of the gene structures is shown above a and d. The physical positions of signals 1–5 are shown as colored, numbered stripes.  
Dotted horizontal lines indicate the genome-wide significance level. 
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Determining the candidate SNPs within each signal
To identify the potential causal variants to be taken forward for func-
tional analysis, we determined the most significant SNP association 
within each signal and then calculated the likelihood ratio of every 
other SNP relative to that SNP. We assumed that SNPs with a likeli-
hood of <1:100 (ref. 9) in comparison with the most significant SNP 
for each signal could be excluded from consideration as potentially 
causative variants. On the basis of the assumption that, within a given 
signal, the same variant(s) would be driving all observed phenotype 
associations, we derived the list of most likely causal SNPs for each 
signal. We used the results from one of two analyses to define the list 
of potentially causal SNPs for each signal: the meta-analysis of BCAC 
subjects with ER− disease and CIMBA BRCA1 mutation carriers for 
signals 1, 2 and 4, which were most strongly associated in this analysis, 
and overall breast cancer risk in BCAC for signals 3 and 5. These lists 
of unexcluded variants are presented in Table 3 and are highlighted 
in Supplementary Table 1.

In signal 1, the most strongly associated variant was rs2046210 
(the original Asian GWAS hit1,10), with nine other variants  
(likelihood ratios <100:1, r2 ≥0.89 with rs2046210; spanning 
151,935,539–151,954,127) remaining as strong causal candidates. In 
signal 2, the best causal candidate was SNP rs12173570, with two 
other candidates remaining (likelihood ratios <100:1, r2 ≥0.75 with 
rs12173570; spanning 151,955,914–151,958,815). The European 
GWAS SNP, rs3757318l (ref. 2), is most strongly correlated with 
rs12173570 (r2 >0.45). In signal 3, the best causal candidate was 
rs851984, with three other candidates remaining (likelihood ratios 
<100:1, r2 = 0.99; in two ESR1 introns spanning 152,020,390–
152,024,985). In signal 4, the top candidate was rs9918437, and two 
other candidates spanned another segment of an ESR1 intron at 
152,055,978–152,072,718 (approximately 30 kb telomeric of signal 
3; likelihood ratios <100:1, r2 > 0.81 with rs9918437). In signal 5, the 
strongest candidate causal SNP was rs2747652 (also the representa-
tive SNP for signal 5 in Table 1), and there were five other candidates  
(likelihood ratios <100:1, r2 >0.97 with rs2747652; spanning 
152,432,902–152,440,522) in the intergenic region between ESR1 and 
SYNE1. Across the five signals, we were able to exclude all but 26 of 
the original 3,872 variants from being potentially causal.

Local gene expression analyses
We used four techniques to assess associations between candidate 
causal variants (or available proxy SNPs) in the five signals and local 
gene expression. (i) ER protein expression, measured by immunohis-
tochemistry in normal breast tissue samples from 150 postmenopausal 
donors, identified a significant correlation of the risk alleles of signal 1 
SNPs with reduced ER levels (Fig. 2a and Supplementary Figs. 1 and 2).  
(ii) ESR1 expression in breast tumors and adjacent normal breast 
tissue from the Molecular Taxonomy of Breast Cancer International 
Consortium (METABRIC) study was compared relative to signal-
representative SNP allele (Fig. 2b and Supplementary Table 8). In 
patients with ER− tumors, risk allele carriers had lower median ESR1 
expression in normal, tumor-adjacent tissue than homozygotes for the 
protective allele at signals 1, 4 and 5, although none of the differences 
were statistically significant. By contrast, in patients with ER+ tumors, 
risk allele carriers had higher median ESR1 expression in normal, 
tumor-adjacent tissue than homozygotes for the protective allele at 
signals 1, 3 and 5. (iii) Allele-specific expression (ASE) analysis, using 
RNA sequencing (RNA-seq) data from breast tumor samples and 
SNP array genotype data from The Cancer Genome Atlas (TCGA)11, 
showed allelic imbalances in ESR1 expression among heterozygotes 
for proxy SNPs in signals 1–3 (Fig. 2c and Supplementary Table 9).  Ta
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tissues analyzed (Supplementary Fig. 4). Chromatin conformation  
capture (3C) experiments demonstrated that elements within  
signals 1 and 2 physically interacted with the promoters of ESR1,  
RMND1-ARMT1 and CCDC170 in MCF-7 and T-47D cells (Fig. 3b 
and Supplementary Fig. 5a,b). Furthermore, we detected interactions 
between signals 3–5 and ESR1 and/or RMND1-ARMT1 promoters 
(Fig. 3c,d and Supplementary Fig. 5c,d). The majority of these inter-
actions were restricted to MCF-7 and T-47D cells (ER+ breast cancer 
cell lines), but the RMND1-ARMT1 interactions were also detected 
in either Bre-80 or MCF10A cells (ER− ‘normal’ breast cell lines;  
Fig. 3b–d and Supplementary Fig. 5b–d). The 3C-identified inter-
actions for each signal are summarized in Supplementary Table 12.

Prioritizing candidate SNPs for functional assays
We applied a combination of in silico and in vitro analyses to  
prioritize candidate causal SNPs for functional follow-up, using 
previous observations that common cancer susceptibility alleles 
are enriched in cis-regulatory elements14–16. First, Table 3 showed 
that 19 of the 26 top candidates overlapped DNase I–sensitive sites 
and were associated with enhancer-enriched histone marks such as 
dimethylation of histone H3 at lysine 4 (H3K4me2) and H3K27ac 
in MCF-7 and HMEC breast cells, indicative of putative regula-
tory elements (PREs) (Supplementary Fig. 6). In electromobility 

Similar imbalances in CCDC170 expression were detected among 
heterozygotes for signal 2 SNP rs9397437 and in RMND1 expression 
with signal 3 SNP rs851983 (Supplementary Table 9). Such allelic 
imbalances indicate that risk alleles at these signals are associated 
with expression differences in local genes, but they do not indicate 
the directions of association. (iv) Expression quantitative trait locus 
(eQTL) analysis using the Gene-Tissue Expression (GTEx) database 
identified a significant association for SNPs in signal 3 with CCDC170 
expression in normal breast tissues (Supplementary Table 10). We 
also performed cis-eQTL analyses on the 12 flanking genes in 135 
normal breast tissue samples from the METABRIC study; however, no 
additional associations were detected (Supplementary Table 11).

Bioinformatic and chromatin analyses
Analysis of cis enhancer–gene interactions using PreSTIGE12 showed 
evidence of multiple regulatory elements coinciding with signals 1–3 
in ER+ MCF-7 breast cancer cells (Fig. 3a and Supplementary Fig. 3).  
A ‘super-enhancer’, associated with high levels of acetylation of his-
tone H3 at lysine 27 (H3K27ac), was also identified in MCF-7 cells 
and encompasses the top risk-associated SNPs in these three signals 
(Fig. 3a and Supplementary Fig. 3)13. This super-enhancer was 
most readily detectable in MCF-7 cells and was not observed in other 
breast cancer cell lines, normal mammary epithelial cells or other 
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Figure 2  ER expression and allelic imbalance correlate with signal 1 SNPs. (a) Negative correlation between the signal 1 SNP rs2046210 and ER 
protein expression. Black dots represent ER expression from individual samples measured by immunohistochemistry (H score). Horizontal lines 
represent the mean H score for each genotype. The P value was calculated using a Spearman rank correlation test. (b) Box plots of ESR1 gene 
expression (log2 transformed) in breast tumor and adjacent normal samples. Boxes extend from the 25th to the 75th percentile, horizontal bars 
represent the median, whiskers indicate the full range of ESR1 expression and outliers are represented as circles. (c) Allelic imbalance in ESR1 
expression by genotypic status at breast cancer risk variants. Data are classified according to the genotypes at risk SNPs (heterozygous versus 
homozygous). Black dots represent the average major allele fraction of the marker SNPs across ESR1 for an individual from TCGA with breast cancer. 
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shift assays (EMSAs), 11 of these 19 SNPs 
altered the binding affinity of transcription 
factors in vitro (Supplementary Fig. 7). Of 
these, seven fell within promoter-specific 
long-range interactions identified by 3C 
(Fig. 3 and Supplementary Fig. 5). The 7 
SNPs prioritized for further detailed analy-
ses included 2 of 10 remaining candidates 
in signal 1 (rs7763637 and rs6557160), 1 
of 3 candidates in signal 2 (rs17081533), 2 
of 4 candidates in signal 3 (rs851982 and 
rs851983), 1 of 3 candidates in signal 4 
(rs1361024) and 1 of 6 candidates in signal 
5 (rs910416) (Supplementary Table 12).

Luciferase reporter assays
The regulatory capabilities of the PREs 
overlapping each signal and the effects of 
the seven prioritized candidate SNPs were 
examined in luciferase reporter assays in the 
ER+ MCF-7 and BT-474 and the ER− Bre-80 
breast cell lines. PRE constructs containing 
the reference alleles of the prioritized SNPs for signals 1, 2, 4 and 
5 significantly increased associated target gene promoter activity 
when cloned in either direction, indicating that they act as orien-
tation-independent transcriptional enhancers. In contrast, a PRE 
containing the reference alleles of the signal 3 candidates ablated 
target gene promoter activity, but only when cloned in the forward 
direction, suggesting that this region acts as an orientation-dependent 
silencer (Fig. 4 and Supplementary Figs. 8–10). Notably, inclusion 
of the minor (risk) alleles of individual candidate SNPs in signals 
1, 2 and 5 (rs6557160, rs17081533 and rs910416) significantly 
reduced ESR1 and RMND1 promoter activity but had no effect on 
the ARMT1 or CCDC170 promoters. However, inclusion of the signal 
1 haplotype significantly decreased ESR1, RMND1 and CCDC170 
promoter activity (Fig. 4 and Supplementary Figs. 8 and 9).  
Inclusion of the individual minor (risk) allele of signal 4 SNP 
rs1361024 or signal 3 SNP rs851983 in the respective constructs had 
no additional effects. In contrast, inclusion of the signal 3 minor (risk) 
allele of rs851982 or the haplotype construct increased ESR1 promoter 
activity in ER+ MCF-7 and BT-474 cells and RMND1 promoter activity  

in all three cell lines (Fig. 4, Supplementary Figs. 8 and 9, and 
Supplementary Table 12).

Transcription factor binding analyses
We used both bioinformatic analyses and functional studies to 
examine DNA-protein interactions for the seven prioritized SNPs. 
In silico prediction tools including intragenomic replicates (IGR)17, 
HaploReg18 and Alibaba2 (ref. 19) predicted that all seven SNPs 
alter transcription factor binding (Supplementary Fig. 11 and 
Supplementary Table 13).

Competition with known transcription factor binding sites sug-
gested the identity of bound proteins for four of the prioritized SNPs, 
including GATA3 binding to the minor (risk) allele of signal 3 SNP 
rs851982 and CTCF binding to the minor allele of a second signal 3 
candidate, rs851983, as well as the common (protective) allele of signal 
4 candidate rs1361024 and MYC binding to the common allele of sig-
nal 5 candidate rs910416 (Supplementary Fig. 12 and Supplementary 
Table 12). Additional well-established breast cell transcription factors, 
such as ER itself and FOXA1, were also assessed but did not display 
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competitive binding to any prioritized SNP 
sites (Supplementary Fig. 13). Chromatin 
immunoprecipitation (ChIP) confirmed 
enrichment of GATA3 binding to DNA 
overlapping signal 3 candidate rs851982, but 
no difference between the alleles, and con-
firmed CTCF binding to the region overlap-
ping signal 4 candidate rs1361024 in BT-474 
cells (Fig. 5a and Supplementary Fig. 14).  
CTCF also bound to the region encompassing signal 3 candidate rs851983 
(Fig. 5a, Supplementary Fig. 14 and Supplementary Table 12).  
CTCF mediates long-range chromatin looping; therefore, to assess 
the potential impact of signal 4 candidate rs1361024 and signal 3 
candidate rs851983 on chromatin interactions, we performed allele-
specific 3C in heterozygous cell lines. Sequence profiles indicated 
that the protective G allele of signal 4 candidate rs1361024 increases 
looping between this enhancer and the ESR1 and RMND1 promoters 
(Fig. 5b and Supplementary Fig. 15a). We found no evidence for 
allele-specific looping between the silencer overlapping signal 3 and 
local gene promoters (Supplementary Fig. 15b).

DISCUSSION
The fine-scale mapping, bioinformatic and functional analyses  
presented here provide evidence for the existence of at least five  
different genetic variants, each with a direct effect on breast cancer  
risk in Europeans, findings also supported by the limited available  
data in Asian populations. These variants are distributed upstream, 
within introns and downstream of ESR1, each in a region, which we 
have demonstrated via reporter assays, is regulatory for ESR1. Some 
may additionally regulate other local genes, such as RMND1, ARMT1  
and CCDC170, previously reported to be co-regulated with ESR1  
(ref. 20). Of note, the four sites more strongly associated with risks 

of ER− than ER+ tumors (signals 1, 2, 4 and 5) all overlap enhancer 
regions, and our evidence indicates that the minor (risk) alleles of 
candidate causal variants, within each of these enhancers, act to 
reduce expression of ESR1, RMND1 and CCDC170. In contrast,  
signal 3—which is associated with smaller but equal risks of  
developing both ER− and ER+ tumors—overlaps a putative gene 
silencer, and the risk alleles of the candidate causal variants here 
increase ESR1 and RMND1 expression. Furthermore, we have dem-
onstrated altered binding of looping factor CTCF to candidate causal 
SNPs in signals 3 and 4, with evidence that the risk allele of signal 4 
candidate rs1361024 abrogates binding and reduces chromatin loop-
ing between this enhancer element and the promoters of ESR1 and 
RMND1. We also provided evidence that signal 5 candidate rs910416 
may display allele-specific binding of MYC.

Notably, the previously unrecognized signal 5 candidates, 
downstream of ESR1, significantly increase the risk of develop-
ing ER−PR−HER2+ tumors (a specific subtype shown to be more 
responsive to the drug trastuzumab) in contrast to the triple- 
negative (ER−PR−HER2−) tumor subtype, which has already been 
reported to be associated with other signals at 6q25 as well as 
19p13 (ref. 21) and 5p15 (TERT)22. We also found evidence that the  
candidate causal variants at signals 3 and 5 predispose to aggressive, 
high-grade breast cancer, independently of ER status.

Figure 4  Risk alleles reduce ESR1 and RMND1 
promoter activity. Luciferase reporter assays 
were performed following transient transfection 
of ER+ MCF-7 breast cancer cells. PREs 
containing the major SNP alleles were cloned 
downstream of target gene promoter-driven 
luciferase constructs (prom) for the creation 
of reference (Ref-PRE) constructs. Minor SNP 
alleles were engineered into the constructs and 
are designated by the rsID of the corresponding 
SNP. “Haplotype” denotes a construct that 
contains the minor alleles of both candidate 
SNPs within signal 1 or 3. Error bars, 95% 
confidence intervals from three independent 
experiments. P values were determined by 
two-way ANOVA followed by Dunnett’s multiple-
comparisons test: **P < 0.01, ***P < 0.001.

Figure 5  GATA3 and CTCF binding in vivo.  
(a) ChIP and quantitative PCR (qPCR) assays using 
antibody against GATA3 or CTCF in ER+ BT-474 
breast cancer cells. A region within the second 
intron of ESR1 served as a negative control (NC). 
Normal rabbit IgG was used as a non-specific 
antibody control. Graphs present the results of 
two biological replicates; error bars, s.d. (b) 3C 
followed by sequencing for the signal 4 PRE 
containing rs1361024 in heterozygous ER+ MCF-7 
breast cancer cells shows allele-specific chromatin 
looping. The chromatograms represent one of three 
independent 3C libraries generated and sequenced.
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Mammographic density adjusted for age and body mass index 
(BMI), which describes the variation in epithelial and stromal  
tissue on a mammogram, is one of the strongest known risk factors 
for breast cancer23 and has been shown to have a shared genetic basis 
with breast cancer, mediated through a large number of common 
variants24. Associations between ESR1 SNPs and mammographic den-
sity have previously been reported25–27, but, in this detailed analysis, 
only signal 2 was significantly associated with mammographic dense 
area (P = 1.7 × 10−5), although signal 1 also showed some evidence 
of an effect in the conditional analysis (P = 0.017). Although adjust-
ing the breast cancer analysis of signal 2 for mammographic dense 
area produced some attenuation of the associated effect, the lead SNP 
remained significantly associated with breast cancer risk (uncondi-
tional OR = 1.30, 95% CI = 1.13–1.49; P = 0.00024; OR conditional on 
dense area = 1.24, 95% CI = 1.08–1.43; P = 0.0025), suggesting either 
that the mechanism by which the signal 2 candidate causal variant 
affects breast cancer risk is not mediated through mammographic 
density or, alternatively, that dense area, as measured here, is unable to 
capture the association with breast composition that is most relevant 
to risk. This phenomenon, whereby the association with risk appears 
to be partially independent of mammographic density, has also been 
observed for the 10q21.2 breast cancer locus4.

SNPs in the ESR1 region have previously been reported to be asso-
ciated with bone mineral density28,29. These include SNPs within  
signal 1 (rs6930633, r2 = 0.73 with rs3757322) and signal 3 (rs2982575,  
r2 = 0.57 with rs851984), although the SNP with the most significant 
reported association with bone density measures, rs4870044, was not 
associated with breast cancer risk (P > 1 × 10−4) in our analysis nor 
correlated with any signal-representative SNPs (r2 <0.06). Similarly, 
SNP rs6933669, recently reported as associated with age at menarche30, 
is uncorrelated with these five signals (r2 <0.02) and was not associated 
with breast cancer (P = 0.1). Thus, although there is a known relation-
ship between age at menarche and breast cancer risk, these phenotypes 
do not appear to share candidate causal variants in this region.

Our findings help address the question of the role of ERα in estab-
lishing breast cancer. Notably, the candidate causal SNPs identified 
here all increase risks of both ER+ and ER− tumor subtypes by varying 
degrees. ERα is a ligand-activated transcription factor that mediates 
the effect of estrogen through altering gene expression, and the links 
between estrogen, ERα and ER+ breast cancer are well documented, 
with adjuvant endocrine therapy considered standard treatment  
for ER+, early-stage breast cancer. Other studies have also reported 
6q25 associations with ER− subtypes1,2,5, but the mechanisms by 
which ER− tumors develop are still debated. There is speculation that 
ER− tumors may arise from ER+ precursors by potentially reversible 
mechanisms, and our findings may lend support to this hypothesis. 
However, several recent studies have indicated that most tumors in 
BRCA1 mutation carriers arise from ER− luminal progenitor cells; 
thus, estrogen may be working indirectly through paracrine regu-
lation in the mammary epithelium, possibly stimulating the Notch 
or epidermal growth factor receptor (EGFR) signaling pathways of 
adjacent ER+ cells31,32. Our analyses unexpectedly suggested that, 
whereas signals 1–4 increased risks of all ER− tumor subtypes, the 
signal 5 candidate causal variant increased risks of ER−HER2+ breast 
cancer subtypes but not of triple-negative tumor development or  
of tumors in BRCA1 mutation carriers (Table 1). This further  
complicates present understanding and underlines the need for  
further studies to address this issue.

Collectively, our evidence supports a hypothesis that ESR1 is the 
major target gene of the enhancer and silencer elements in which  
we have identified candidate causal variants. In addition to ESR1, we 

provide evidence that the regions overlapping signals 1–4 coopera-
tively regulate RMND1, raising the possibility that candidate causal 
SNPs act by altering both ESR1 and RMND1 expression. RMND1 
(required for meiotic nuclear division 1; C6orf96) has not been well 
characterized but is reported to localize to mitochondria and be 
involved in mitochondrial translation33. We additionally identified 
enhancer activity and chromatin interactions with two other genes, 
ARMT1 and CCDC170, but the actions of the candidate causal SNPs 
on these genes remain unclear. ARMT1 encodes Armt1, a protein car-
boxyl methyltransferase that targets PCNA and differentially regulates 
cancer cell survival in response to DNA damage34. Nothing is known 
about the function of CCDC170 (coiled-coil domain–containing  
protein 170), but recurrent ESR1-CCDC170 rearrangements have 
been characterized in an aggressive subset of ER+ breast cancers35.  
A recent study also showed that higher CCDC170 expression cor-
related with ER negativity, highly proliferative features and worse 
clinical outcomes36. There are some data to suggest that these genes 
may cooperatively contribute to the increased proliferative capacity 
of ER+ tumors20, and it is tempting to speculate that these may be 
additional target genes for the candidate causal variants at a subset 
of the five signals identified here and perhaps responsible for their 
differential phenotype associations. A greater understanding of these 
genes may also provide novel targets for breast cancer prevention  
or therapies.

URLs. 1000 Genomes Project, http://www.1000genomes.org/; Breast 
Cancer Association Consortium (BCAC), http://ccge.medschl.cam.
ac.uk/consortia/bcac/index.html; Consortium of Investigators of 
Modifiers of BRCA1 and BRCA2 (CIMBA), http://ccge.medschl.
cam.ac.uk/consortia/cimba/index.html; Collaborative Oncological 
Gene-environment Study (COGS), http://www.cogseu.org/; iCOGS, 
http://ccge.medschl.cam.ac.uk/research/consortia/icogs/; SNAP, 
https://www.broadinstitute.org/mpg/snap/; The Cancer Genome 
Atlas (TCGA), https://tcga-data.nci.nih.gov/; Cancer Genomics  
Hub (CGHub), https://cghub.ucsc.edu/; eMAP, http://www.bios.unc.
edu/~weisun/software.htm.

Methods
Methods and any associated references are available in the online 
version of the paper.

Accession codes. The relevant SNP genotype data underpinning  
these analyses can be accessed by applying to the BCAC and CIMBA 
consortia (see URLs).

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Study populations and genotyping. Epidemiological data were obtained from 
three separate consortia that had all conducted genotyping using the iCOGS 
array, a custom array comprising approximately 200,000 SNPs. (i) Data on 
overall breast cancer risk, tumor subtypes and grade came from 50 breast 
cancer case-control studies participating in BCAC; these comprised 41 studies 
from populations of European ancestry and 9 studies from populations of East 
Asian ancestry3. Details of the participating studies, genotype calling and qual-
ity control are given elsewhere3. After quality control exclusions, we analyzed 
data from 46,451 cases and 42,599 controls of European ancestry and 6,269 
cases and 6,624 controls of Asian ancestry. A further 23 SNPs were directly 
genotyped in two case-control studies (CCHS and SEARCH). The ER status of 
the primary tumor was available for 34,539 European and 4,972 Asian cases; 
of these, the tumor was ER− for 7,465 (22%) European and 1,610 (32%) Asian 
cases3. (ii) Data on BRCA1 mutation carriers were obtained through CIMBA. 
Eligibility is restricted to females 18 years or older with pathogenic mutations 
in BRCA1 or BRCA2. The majority of the participants were sampled through 
cancer genetics clinics37, including some related participants. Fifty-one stud-
ies from 25 countries contributed data on BRCA1 mutation carriers who were 
genotyped using the iCOGS array38. After quality control of the phenotypes 
and genotypes, data were available on 15,252 BRCA1 mutation carriers, of 
whom 7,797 had been diagnosed with breast cancer, all of European ancestry. 
Analyses in BRCA1 mutation carriers assessed associations with breast cancer 
risk. (iii) Mammographic density information was available for 7,025 women 
from ten studies in BCAC and, in addition, 1,621 women from the Mayo 
Mammographic Health Study (MMHS). All were additionally participants in 
the MODE Consortium. Forty-six women were excluded because of missing 
BMI information, leaving 8,600 women with mammographic density infor-
mation, relevant covariates and iCOGS genotyping (2,955 breast cancer cases 
and 5,645 controls). Study details are given in Supplementary Table 14 and 
in Lindstrom et al.26. Mammographic density measurements were performed 
on digitized analog mammographic films using ‘Cumulus’ software39. This 
applies a thresholding technique to measure the total area of the breast and 
the absolute dense area, from which the absolute non-dense area and percent 
dense area are derived. Dense areas and non-dense areas were converted to 
cm2 according to the pixel size used in the digitization. Readers blinded to 
genotype, case status and risk factor data conducted all measures. For cases, 
mammograms before the diagnosis of breast cancer were used or, where this 
was not possible, measures from the contralateral breast were used.

SNP selection, genotyping and imputation. We first defined a mapping 
interval of ~1 Mb (chr. 6: 151,600,000–152,650,000; NCBI Build 37 assem-
bly). We catalogued 2,821 variants with a MAF >2% using the 1000 Genomes 
Project (March 2010 Pilot version 60 CEU project data); of these variants, 
we selected 277 SNPs correlated with the 3 previously reported associated 
SNPs (rs2046210 (ref. 1), rs3757318 (ref. 2) and rs3020314 (ref. 40)) at  
r2 >0.1, plus a set of 698 SNPs designed to tag all remaining SNPs with r2 >0.9. 
Of the SNPs, 902 that passed quality control were included in this analysis. 
After completion of iCOGS genotyping, this initial set was supplemented 
with a further 23 SNPs selected from the October 2010 (Build 37) release 
of the 1000 Genomes Project, to improve coverage. These SNPs were geno-
typed in two large BCAC studies (CCHS and SEARCH) comprising 12,273 
cases and controls, using a Fluidigm array according to the manufacturer’s 
instructions. Using the above data, results for all the additional known com-
mon variants (MAF >0.02 in Europeans) on the January 2012 release of the  
1000 Genomes Project were imputed using IMPUTE version 2.0. Quality 
control and imputation steps were carried out separately in the different 
consortia, leading to slight differences in the numbers of SNPs with avail-
able data. In addition to the 902 successfully genotyped SNPs, genotypes  
at 2,972 SNPs were imputed in BCAC and 2,907 SNPs were imputed in 
CIMBA (imputation r2 score >0.3 in each case). In total, 3,872 genotyped 
or imputed SNPs were available for the combined BCAC ER− and CIMBA 
BRCA1 mutation carrier meta-analysis

Statistical analysis. Case-control analysis, logistic regression and retrospective 
cohort analyses. For the case-control analysis in BCAC, per-allele odds ratios 
and standard errors were estimated for each SNP using logistic regression, 

separately for subjects of European and Asian ancestry and for each tested 
phenotype. Principal components were included as covariates as previously 
described21. The statistical significance of each SNP was derived using a Wald 
test. To evaluate evidence for multiple association signals, we performed con-
ditional analyses in which the association for each SNP was reevaluated after 
including other associated SNPs in the model. SNPs with a P value <1 × 10−4 
and MAF >2% in the single-SNP analysis were included in this analysis21. 
Haplotype-specific odds ratios and confidence limits were estimated using 
haplo.stats22.

Associations between genotypes and breast cancer risk in BRCA1 mutation 
carriers in CIMBA were evaluated using a per-allele trend test with 1 degree 
of freedom (Ptrend), based on modeling the retrospective likelihood of the 
observed genotypes conditional on breast cancer phenotypes41. To allow for 
non-independence among related individuals, an adjusted test statistic was 
used that took into account the correlation in genotypes21. Per-allele hazard 
ratio estimates were obtained by maximizing the retrospective likelihood. All 
analyses were stratified by country of residence.

Conditional analyses were performed to identify SNPs independently  
associated with each phenotype. To identify the most parsimonious model, 
all SNPs with a marginal P value <1 × 10−4 were included in forward selection  
regression analyses with a threshold for inclusion of P < 1 × 10−4 and including 
terms for principal components and study. Similarly, forward selection Cox 
regression analysis was performed for BRCA1 mutation carriers, stratified 
by country of residence, using the same P-value thresholds. This approach 
provides valid significance tests of the associations, although the estimates 
quantifying the association can be biased41,42. Parameter estimates for  
the most parsimonious model were obtained using the retrospective likeli-
hood approach.

Within MODE, mammographic dense area, non-dense area and percent 
dense area were each square-root transformed to fit a normal distribution. For 
the ten MODE and BCAC studies, a linear regression assuming a multiplicative 
per-allele model adjusting for study, age at mammogram, BMI, menopausal 
status (pre or post) and the first six principal components was carried out 
for each trait and for each SNP. The MMHS participants were analyzed sepa-
rately in the same way but without the principal-components covariates, and  
the results were combined with those from BCAC using a standard inverse 
variance–weighted fixed-effects meta-analysis.

Expression analysis. eQTL analyses were conducted in 57 normal breast  
samples from the GTEx Project43 and 135 adjacent normal breast samples from 
women of European origin in the METABRIC study44. For the METABRIC 
analyses, matched gene expression (Illumina HT-12 v3 microarray) and  
germline SNP data from either genotyping (Affymetrix SNP 6.0) or imputation 
(1000 Genomes Project, March 2012 data using IMPUTE version 2.0) were 
used. Correlations between the five signal-representative SNPs and expres-
sion levels of nearby genes (500 kb upstream and downstream of the SNPs) 
were assessed using a linear regression model in which an additive effect on 
expression level was assumed for each copy of the rare allele. Calculations were 
carried out using the eMAP library in R.

Allele-specific expression analysis. ASE analysis has been described previ-
ously11. Three SNPs for signal 1, two SNPs for signal 3 and a proxy SNP for 
signal 2 (r2 = 0.85) were on Affymetrix SNP Array 6.0. TCGA genotype calls 
and corresponding confidence scores were retrieved using level 2 TCGA SNP 
array Birdseed data downloaded from the TCGA portal. Genotyping data 
with a confidence score of 0.1 were excluded. We selected 742 breast cancer 
samples with European ancestry. The corresponding RNA-seq BAM files and 
metadata are available from the Cancer Genomics Hub (CGHub). Marker 
SNPs, the exonic SNPs of the target genes, were extracted from dbSNP human 
Build 142 (collectively ~800 SNPs for ESR1, RMND1, ARMT1 and CCDC170), 
and RNA-seq read counts on SNP sites for reference and alternative alleles  
were computed. Homozygote marker SNPs and those with low coverage  
(less than 15×) were excluded. Major allele fraction (µ) representing allelic 
imbalance for each marker SNP was computed, and an average of allelic imbal-
ances for each gene was calculated for individual tumor samples. Marker SNPs 
with extreme µ values (µ >0.75) were not included in the analysis. Level 3 SNP 
array data were downloaded from the TCGA portal, and GISTIC version 2.0.16 
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was used to identify copy number variations (CNVs) for each sample. Samples 
with low or high CNV levels, as presented in the gene-based GISTIC module 
report, were excluded from the analysis of the corresponding gene. For each 
risk SNP, allelic imbalance for the target transcripts was compared between 
heterozygote (AB) and homozygote (AA and BB) samples. For a given risk 
SNP and target gene, we used Levene’s test, a more robust test than the F test, 
for equality of variances when the risk SNP was not in linkage disequilibrium 
with any of the marker SNPs on that gene (r2 <0.5). Otherwise, a two-tailed  
t test was used for equality of means45.

Estrogen receptor protein expression. Normal breast samples derived  
from 150 postmenopausal donors (non-Hispanic, mean age of 62 years) 
and identified through the Susan G. Komen for the Cure Tissue Bank at the 
Indiana University Simon Cancer Center were used in this study46. DNA was 
extracted from blood cells at the Indiana CTSI Specimen Storage Facility using 
an AutogenFlex Star instrument (Autogen) and the FlexiGene AGF3000 blood 
kit for DNA extractions (Qiagen). SNP analysis was performed with 1 ng 
of DNA using TaqMan genotyping assays for rs2046210 (C_12034236_10),  
rs3757322 (C_27475059_10), rs9397437 (C_11556300_10), rs851984  
(C_2496819_10), rs9918437 (C_29496189_10) and rs2747652 (C_2823750_10)  
from Life Technologies, following the manufacturer’s protocol. ER protein 
abundance was measured by immunohistochemical semiquantitation using 
an antibody to ERα (clone 6F11; 1:40 dilution; Leica Microsystems) and 
quantified with (i) an H score consisting of the sum of the percent of tumor 
cells staining, multiplied by an ordinal value corresponding to the intensity 
level (0, none; 1, weak; 2, moderate; 3, strong; Supplementary Fig. 2), and  
(ii) the percentage of positive cells. Correlations between the H scores and 
ER immunohistochemistry values were calculated using Spearman’s rank  
correlation analysis. All P values reported are two-sided, and values <0.05  
were considered statistically significant.

Cell lines. Breast cancer cell lines MCF-7 (ER+; American Type Culture 
Collection (ATCC) HTB22), T-47D (ER+; ATCC HTB133) and BT-474 (ER+; 
ATCC HTB20) were grown in RPMI medium with 10% FCS and antibiotics. 
Normal breast epithelial cell lines MCF10A (ATCC CRL 10317) and Bre-
80 (provided as a gift from R. Reddel, Children’s Medical Research Institute, 
Sydney) were grown in DMEM/F12 medium with 5% horse serum (HS),  
10 µg/ml insulin, 0.5 µg/ml hydrocortisone, 20 ng/ml epidermal growth  
factor, 100 ng/ml cholera toxin and antibiotics. Cell lines were maintained 
under standard conditions, routinely tested for mycoplasma and short tandem 
repeat (STR) profiled.

Chromatin conformation capture.  3C libraries were generated using EcoRI, 
HindIII or BglII as described previously15. 3C interactions were quantified 
by RT-PCR (qPCR) using primers designed within restriction fragments 
(Supplementary Table 15). qPCR was performed on a RotorGene 6000 instru-
ment using MyTaq HS DNA polymerase (Bioline) with the addition of 5 mM 
Syto9, an annealing temperature of 66 °C and an extension time of 30 s. 3C 
analyses were performed in three independent 3C libraries from each cell 
line, with each experiment quantified in duplicate. BAC clones (RP11-108N8, 
RP11-713G5, RP11-450E24 and RP11-55K19) covering the 6q25 region were 
used to create artificial libraries of ligation products to normalize for PCR 
efficiency. Data were normalized to the signal from the BAC clone library 
and, between cell lines, by reference to a region within GAPDH. All qPCR 
products were electrophoresed on 2% agarose gels, gel purified and sequenced 
to verify the 3C product.

Electromobility shift assays.  Gel shift assays were performed with ER+ MCF-7  
or ER− Bre-80 nuclear lysates and biotinylated oligonucleotide duplexes 
(Supplementary Table 16). Nuclear lysates were prepared using NE-PER 
nuclear and cytoplasmic extraction reagents (Thermo Fisher Scientific) 
according to the manufacturer’s instructions. Total protein concentrations  
in nuclear lysates were determined by Bradford’s method. Duplexes were pre-
pared by combining sense and antisense oligonucleotides in NEBuffer2 (New 
England BioLabs) and heat annealing at 80 °C for 10 min followed by slow 
cooling to 25 °C for 1 h. Binding reactions were performed in binding buffer 
(10% glycerol, 20 mM HEPES (pH 7.4), 1 mM DTT, protease inhibitor cocktail 

(Roche), 0.75 µg poly(dI:dC) (Sigma-Aldrich)) with 7.5 µg of nuclear lysate. For 
competition assays, binding reactions were preincubated with 1 pmol of compet-
itor duplex (Supplementary Table 17) at 25 °C for 10 min before the addition of 
10 fmol of biotinylated oligonucleotide duplex and a further incubation at 25 °C 
for 15 min. Reactions were separated on 10% Tris-borate-EDTA (TBE) polyacr-
ylamide gels (Bio-Rad) in TBE buffer at 160 V for 40 min. Duplex-bound com-
plexes were transferred onto Zeta-Probe positively charged nylon membranes 
(Bio-Rad) by semidry transfer at 25 V for 20 min and then cross-linked onto 
the membranes under 254-nm ultraviolet light for 10 min. Membranes were 
processed with the LightShift Chemiluminescent EMSA kit (Thermo Fisher 
Scientific) according to the manufacturer’s instructions. Chemiluminescent 
signals were visualized with the C-DiGit blot scanner (LI-COR).

Plasmid construction and reporter assays. Promoter-driven luciferase 
reporter constructs were generated by the insertion of PCR-amplified frag-
ments containing ESR1, ARMT1, RMND1 and CCDC170 promoters into the 
KpnI and MluI sites of pGL3-Basic. To assist in cloning, AgeI and SbfI sites 
were inserted into the BamHI and SalI sites downstream of the luciferase gene. 
A 1,496-bp signal 1 PRE fragment, a 997-bp signal 2 PRE fragment, a 1,566-
bp signal 3 PRE fragment, a 1,463-bp signal 4 PRE fragment and a 1,349-bp 
signal 5 PRE fragment were generated by PCR or gBlocks (Integrated DNA 
Technologies) and cloned into the AgeI and SbfI sites of the modified pGL3-
Promoter constructs. The minor alleles of individual SNPs were introduced 
into the PRE sequences by overlap extension PCR or gBlocks. Sequencing 
of all constructs confirmed variant incorporation (AGRF). ER+ MCF-7 and 
BT-474 or ER− Bre-80 cells were transfected with equimolar amounts of luci-
ferase reporter plasmids and 50 ng of pRL-TK transfection control plasmid 
with Lipofectamine 3000. The total amount of transfected DNA was kept 
constant at 600 ng for each construct by the addition of pUC19 as a carrier 
plasmid. Luciferase activity was measured 24 h after transfection by the Dual-
Glo Luciferase Assay System. To correct for any differences in transfection 
efficiency or cell lysate preparation, firefly luciferase activity was normalized 
to Renilla luciferase activity, and the activity of each construct was measured 
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