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Abstract
Despite evidence that kinesin family member 14 (KIF14) can serve as a prognostic biomarker in various solid
tumors, how it contributes to tumorigenesis remains unclear. We observed that experimental decrease in KIF14
expression increases docetaxel chemosensitivity in estrogen receptor–negative/progesterone receptor–negative/
human epidermal growth factor receptor 2-negative, “triple-negative” breast cancers (TNBC). To investigate the
oncogenic role of KIF14, we used noncancerous human mammary epithelial cells and ectopically expressed
KIF14 and found increased proliferative capacity, increased anchorage-independent grown in vitro, and
increased resistance to docetaxel but not to doxorubicin, carboplatin, or gemcitabine. Seventeen benign breast
biopsies of BRCA1 or BRCA2 mutation carriers showed increased KIF14 mRNA expression by fluorescence in
situ hybridization compared to controls with no known mutations in BRCA1 or BRCA2, suggesting increased
KIF14 expression as a biomarker of high-risk breast tissue. Evaluation of 34 cases of locally advanced TNBC
showed that KIF14 expression significantly correlates with chemotherapy-resistant breast cancer. KIF14
rone-receptor negative/Her2 negative; siRNA, small-interfering RNA; LC50, median
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knockdown also correlates with decreased AKT phosphorylation and activity. Live-cell imaging confirmed an
insulin-induced temporal colocalization of KIF14 and AKT at the plasma membrane, suggesting a potential role
of KIF14 in promoting activation of AKT. An experimental small-molecule inhibitor of KIF14 was then used to
evaluate the potential anticancer benefits of downregulating KIF14 activity. Inhibition of KIF14 shows a
chemosensitizing effect and correlates with decreasing activation of AKT. Together, these findings show an
early and critical role for KIF14 in the tumorigenic potential of TNBC, and therapeutic targeting of KIF14 is
feasible and effective for TNBC.

Neoplasia (2014) 16, 247–256.e2
Introduction
Triple-negative breast cancer (TNBC) is clinically defined as approxi-
mately 20% of all breast cancers that lack the expression of estrogen
receptor and progesterone receptor and overexpression of human
epidermal growth factor receptor 2 or HER2. TNBC is increasingly
recognized as a very heterogeneous disease with various molecular,
genetic, and clinical subgroups [1–3]. The problem of molecularly
targeting TNBC is trying to find oncogenic dependence across the
heterogeneity of the disease. We previously performed a targeted RNA
interference screen of the known somatic mutations found in breast
cancer in a basal, claudin-low, TNBC cell line, MDA-MB-231 [4],
representing possibly the most aggressive TNBC with characteristics of
breast cancer–initiating or stem cells and with the poorest response to
treatment [1,5,6]. We found that kinesin family member 14 (KIF14)
stands out as a gene that, when knocked down, significantly increases
sensitivity of multiple TNBC cell lines to docetaxel, one of the most
commonly used chemotherapies for breast cancer. KIF14 is specifically
expressed in 92% of all TNBCs, a much higher fraction than in the other
clinical subtypes found in the Cancer Genome Atlas [4].

Kinesins are molecular motors important for intracellular transport
[7,8]. KIF14 was initially found to be involved in cytokinesis by its
localization at the central spindle and midbody along with its interaction
with citron kinase and protein-regulating cytokinesis 1 [9,10].KIF14was
first noted to be located in a region of genomic gain in multiple cancers
[11] and has subsequently been found to be a significant prognostic
biomarker and a likely oncogene in breast cancer, lung cancer, ovarian
cancer, retinoblastomas, and gliomas [12–15]. As an ATPase, it also has
potential as a therapeutic target [16]. KIF14 can act as a scaffold protein
tethering the Rap1 effector Radil to microtubules to regulate integrin
signaling [17]. In the present study, we show that increased KIF14
expression correlates with resistance to neoadjuvant chemotherapy in
patients with locally advanced TNBC and that decreased expression of
KIF14 leads to chemosensitization that may be due to decreased
prosurvival pathways as a consequence of decreased AKT activity. We
demonstrate that increased KIF14 expression is detected in benign breast
tissue of high-riskBRCAmutation carriers andmay be an early biomarker
for tumor progression. We further show that KIF14 is a druggable target
that could be exploited to achieve therapeutic efficacy.

Materials and Methods

Plasmids and Transfection
Myristoylated pCMV6 AKT1 was gift from M. White [18]

(Department of Cell Biology, University of Texas Southwestern
Medical Center, Dallas, TX). pEGFP-KIF14 was a gift from F. Barr
[9]. pDsRed2-N1was obtained fromClontech Laboratories (Mountain
View, CA), and pDsRed2-Akt1 was cloned from pCMV6 AKT1 with
BamH1/EcoR1 (New England Biolabs, Ipswich, MA) restriction sites.
cDNA transfections were performed with Lipofectamine LTX Reagent
(Invitrogen, Grand Island, NY) as per manufacturer's protocol.

Human Tissues
Benign, deidentified breast biopsies were obtained from the

Komen Tissue Bank (Indianapolis, IN) and University of Texas
Southwestern Tissue Repository (Dallas, TX). Primary human breast
tumors were deidentified and obtained from Parkland Hospital
(Dallas, TX) and used with approval from Parkland Hospital and
University of Texas Southwestern Medical Center Institutional
Review Boards. All primary human breast tumors examined in this
study underwent treatment with docetaxel or paclitaxel-containing
chemotherapy regimen given with doxorubicin.

Fluorescence In Situ Hybridization
Stellaris mRNA FISH probes against KIF14 and CAL Fluor Red

610 were obtained from Biosearch Technologies (Novato, CA), and
hybridization was performed as per manufacturer's protocol. Images
were obtained with Deltavision (Applied Precision, Issaquah, WA)
and quantification with ImageJ (National Institute of Health,
Bethesda, MD). Specificity of the KIF14 mRNA fluorescence in situ
hybridization (FISH) probes was performed withMDA-MB-231 cells
with knocked-down KIF14 compared to parental cells (data not
shown). Four commercially available KIF14 antibodies tested were
No. A300-912A from Bethyl Laboratories (Montgomery, TX), No.
ABT46 from Millipore (Billerica, MA), and No. 48562 and No.
365553 from Santa Cruz Biotechnology (Dallas, TX).

Expression Array Analysis
Expression array data from FACS-sorted mammary populations were

obtained fromGene Expression Omnibus (www.ncbi.nlm.nih.gov/geo/)
(National Center for Biotechnology Information, Bethesda, MD) with
Accession No. GSE16997 [19]. Hierarchical clustering was used to
segregate samples, and all analyses were performed with R/Bioconductor
(Fred Hutchinson Cancer Research Center, Seattle, WA).

Western Blot Analysis and Immunoprecipitation
Cell lysates were prepared by harvesting cells in Laemmli sodium

dodecyl sulfate reducing buffer, resolved on an 8% to 10%
polyacrylamide gel, and transferred to a polyvinylidine difluoride
membrane. The following antibodies were from Cell Signaling
Technology (Beverly, MA): Glyceraldehyde 3-phosphate dehydro-
genase (2118), phospho-AKT pathway antibody sampler (9916),
p21 (2947), p62 (8025), and pS6K (9234). KIF14 antibody was

http://www.ncbi.nlm.nih.gov/geo/
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from Bethyl Laboratories. Detection of peroxidase activity from
HRP-conjugated antibodies was performed with SuperSignal West
Femto Maximum Sensitivity Substrate (Thermo Scientific, Rock-
ford, IL). Images were captured with the G:BOX-F3 with GeneSys
software (Syngene, Frederick, MD). Cells for immunoprecipitation
were harvested with nondenaturing cell lysis buffer (No. 9803; Cell
Signaling Technology) supplemented with protease inhibitors
(Millipore, Darmstadt, Germany) and further lysed with 22-gauge
needle and syringe. Cell lysates were incubated at 4°C overnight with
pan-AKT antibody at 1:50 (Cell Signaling Technology) or
immunoglobulin control. Protein A/G agarose beads (Santa Cruz
Biotechnology) were incubated with cell lysates for 4 hours at 4°C
and washed with phosphate-buffered saline–Tween(R)20 before
sodium dodecyl sulfate–polyacrylamide gel electrophoresis and
subsequent immunoblot analysis.
Anchorage-Independent Colony Formation Assay
Cultured cells were seeded in 0.375% Noble agar (Difco, Sparks,

MD) in a 24-well plate on top of 0.5% presolidified agar. Each density
was seeded in triplicates, and each assay was performed two separate
times. After 21 days, wells were imaged with SteREO scope (Carl Zeiss,
Thornwood, NY) and scored for macroscopically visible colonies
N1mm.GraphPad Prism 5 (GraphPad Software, Inc., La Jolla, CA) was
used to plot data and perform two-tailed Student's t tests.
Cell Lines and RNA Interference
All cell lines, culture conditions, and the generation of stable

KIF14 knockdowns are as described previously [4]. The two KIF14
No. 1 and No. 2 small-interfering RNAs used are J-003319-05 and J-
003319-06, respectively, from Dharmacon/Thermo Scientific.
Unless specified, siKIF14 refers to J-003319-06.
Kinase Assay
Evaluation of KIF14 inhibitor (KIF14i) activity against phosphoinosi-

tide 3-kinase (PI3K) (p110α/p85α) and AKT1 was performed by
SignalChem Lifesciences Corp (Richmond, British Colombia). Profiling
of KIF14i activity in duplicate was performed at four concentrations (10
nM, 100 nM, 1000 nM, and 10,000 nM). Staurosporine andwortmanin
were used as positive controls against AKT1 and PI3K, respectively. 33P-
ATP was used for AKT1 radioisotope assay, whereas the ADP-Glo assay
kit from Promega (Madison, WI) was used for the PI3K assay.
Viability Assays
Chemicals or DMSO as control was added to cells at 60%

confluency, and cell viability was determined 72 hours later with
CellTiter-Glo or CytoTox-Glo (Promega) as per manufacturer's
protocols. Whereas viability is directly inferred from luminescent
signal in the CellTiter-Glo assay, viability in the CytoTox-Glo assay
is calculated by subtracting the luminescent signal resulting from
experimental agent–induced cell death from total luminescent values
after addition of lysis reagent. Data are means from two independent
experiments performed in triplicate. Reported median lethal
concentration (LC50) values are calculated from dose-response curves
obtained with CellTiter-Glo assays. Direct comparisons of the two
assays on experiments performed in parallel are shown in Figure W1.
Unless otherwise specified, all viability assays in the figures are
performed with CellTiter-Glo assays.
Chemicals
Insulin (Sigma, St Louis, MO) was used at 100 nM for 30 minutes

unless otherwise specified. Docetaxel, doxorubicin, gemcitabine, and
carboplatin were obtained from Sigma. MK2206 was obtained from
Selleck Chemicals (Houston, TX).

Synthesis of KIF14i
(E)-2-(4-isopropyl-3-nitrobenzylidene)hydrazinecarbothioamide [20].
On the basis of a published method [21], 4-isopropyl-3-
nitrobenzaldehyde (100 mg, 0.52 mmol, 1 eq) and thiosemicarbazide
(47.2 mg, 0.52 mmol, 1 eq) were combined with MeOH (10 ml,
0.05 M). The mixture (which was poorly soluble at
room temperature) was heated to 70°C in a capped 1-dram vial for
6 hours. The mixture was then concentrated and purified by column
chromatography (155%-100% EtOAc/hexanes) to give a cream-
colored solid (116.1 mg, 0.436 mmol, 84%). 1H nuclear magnetic
resonance (500 MHz, DMSO-d6) spectrum showed δ 11.56 (s, 1H),
8.32 (d, J = 1.7 Hz, 1H), 8.28 (s, 1H), 8.21 (s, 1H), 8.05 (s, 1H),
7.97 (dd, J = 8.2, 1.7 Hz, 1H), 7.63 (d, J = 8.2 Hz, 1H), 3.12 (hept, J
= 6.6 Hz, 1H), and 1.25 (d, J = 6.8 Hz, 6H). 13C nuclear magnetic
resonance (126 MHz, DMSO) spectrum showed δ 178.24, 150.07,
141.60, 139.47, 133.61, 131.22, 127.98, 120.75, 28.28, and 23.10.

Statistical Analysis
All experiments were performed at least three times except for

viability assays that were performed twice with data as means from
triplicates. Means were compared using Student's t test except
analysis of covariance was used to compute the P value for the survival
curves. All statistical tests were two sided, with P b .05 taken as
significance threshold.

Live-cell Imaging and Image Processing
Cells were seeded onto chambered cover glass (Thermo Scientific)

at 70% confluency. Images were obtained with Deltavision (Applied
Precision) with 60× oil immersion lens, whereas cells were in
enclosure supplied with 5% CO2 and kept at 37°C. Forty-micron
sections were obtained at 10 to 15 minutes apart for up to 2 hours.
Images were then generated into .lsm files and were processed
through the Imaris software (Bitplane AG, Zurich, Switzerland) for 3-
dimensional reconstruction.
Results

KIF14 Overexpression is Correlated with Increased
Proliferation and Anchorage-Independent Growth In Vitro

To investigate if increased KIF14 expression is sufficient to confer
an oncogenic phenotype to benign cells, we generated stably
transfected pEGFP-KIF14 in benign, normal, diploid, telomerase
reverse transcriptase-immortalized noncancerous human mammary
epithelial cells (HME1) (Figure 1A). We found that KIF14 modestly
overexpressing cells proliferate significantly faster compared to
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Figure 1. (continued).
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vector-transfected cells (doubling time for vector-control and pEGFP
KIF14 cells are 2.8 days vs 3.1 days, respectively; P = .0021 by
Student's t test for values at 8 days after seeding in equal numbers,
Figure 1B). Increased KIF14 expression in HME1 cells is sufficient
to increase anchorage-independent growth (Figure 1, C and D).
Decreased KIF14 expression correlates with decreased migratory
ability of breast cancer cell lines [17]. However, increased KIF14
expression in HME1 cells is not sufficient to increase the ability of
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these cells to migrate through extracellular matrices such as Matrigel™
(BD Biosciences, San Jose, CA) or to increase tumorigenicity of
HME1 cells in mammary fat pads of immunocompromised mice
(data not shown).
Figure 1. Functional assays of KIF14 overexpression in benign breast
BRCAmutation carriers. (A) Immunoblot of HME1 cells stably transfec
cells when transfected with vector only versus pEGFP KIF14. P valu
number of cells at 8 days between the two groups. (C) Representative
colony formation of HME1 cells when transfected with vector on
performed two independent times. (E) Representative KIF14mRNA FI
(red denotes KIF14mRNA foci; green denotes nuclei). Scale bar, 20 μ
mutation carrier and control subjects with no known mutations. All P
represent SEM. (G) Hierarchical clustering of GSE16997 showing KIF1
cells. Each GEO Sample number refers to a microarray. Each microar
one of three human subjects that were FACS sorted into four popu
luminal, and stromal). The luminal progenitor subpopulation from all
other subpopulation from each subject.
KIF14 Genetic Alteration is an Early Event in Breast
Cancer Pathogenesis

Recent whole-genome sequencing efforts have shown that multiple
mutations are acquired during breast carcinogenesis [2,22–25]. KIF14
epithelial cells and expression of KIF14 in benign breast biopsies of
ted with pEGFP vector and pEGFP KIF14. (B) Proliferation of HME1
e from two-sided Student's t test compares the manually counted
images of soft agar colony formation. (D) Quantification of soft agar
ly versus pEGFP KIF14. Results in B and D represent triplicates
SH images from a BRCA1mutation carrier and age-matched control
m. (F) Summary quantification of KIF14mRNA FISH between BRCA
values are from unpaired two-sided Student's t test. All error bars
4 expression among subpopulations of benign mammary epithelial
ray was performed on a subpopulation of benign breast cells from
lations (luminal progenitor, mammary stem-cell enriched, mature
three human subjects expressed higher KIF14 expression than any
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is located at chromosome 1q, gain of which has been found to be one of
the earliest genetic alterations seen in breast cancer [23]. KIF14 is found
to be altered in 75 of 825 (9%) of breast cancer cases in The Cancer
Genome Atlas, with 40 of 75 (53%) of KIF14 alterations being copy
number amplification (cbioportal.org). Because BRCA1 or BRCA2
mutation carriers have 60% to 80% lifetime risk of developing breast
cancer [26,27], we hypothesized that early events that drive
tumorigenesis may be present before overt cancer is detected. We
examined KIF14 expression in 35 benign breast cases, from the Komen
Tissue Bank and the University of Texas Southwestern Medical Center
Tissue Repository. Of these, 16 had BRCA1 or BRCA2 mutations,
whereas 19 of them had no known BRCA1 or BRCA2 mutations. No
commercially available KIF14 antibodies for immunohistochemistry
were reliable (see Materials and Methods section for the four antibodies
we tested). We found that KIF14 expression by mRNA FISH (i.e., the
average number of cytoplasmic mRNA foci per 50 cells) was
significantly increased in BRCA mutation carriers (Figure 1, E and F).
Interestingly, KIF14 mRNA expression was seen in the luminal
epithelial layer, where aberrant luminal progenitors for basal tumor
development in BRCA1 mutation carriers have been found [19]. We
evaluated KIF14 expression in expression arrays of subpopulations of
cells within dissociated mammary glands [19] by clustering analysis and
found that KIF14 expression is highest among luminal progenitors
(Figure 1G).

KIF14 Overexpression Correlates with Chemoresistance
Another key oncogenic phenotype is resistance to apoptosis. We

evaluated if KIF14 expression correlates with response to neoadjuvant
chemotherapy in TNBC. We examined 68 locally advanced TNBCs
that had undergone neoadjuvant chemotherapy from January 2008 to
January 2012 from a single large community hospital in Dallas, TX,
and found that 18 cases (26.5%) had pathologic complete response
(pCR), whereas 10 (14.7%) had resistant disease despite chemother-
apy (tumor at the time of surgical resection was the same or larger size
as measured by ultrasound at the time of diagnosis). KIF14 mRNA
FISH up-regulation correlated with chemoresistant tumors, whereas
low KIF14 expression correlated with pCR (Figure 2, A and B).

To further evaluate if KIF14 expression modulates chemoresis-
tance, we evaluated if increased KIF14 expression in HME1 is
sufficient to significantly increase resistance to docetaxel,

http://cbioportal.org
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doxorubicin, carboplatin, or gemcitabine, a few of the most
commonly used chemotherapies given for breast cancer, in cell
viability assays (see Materials and Methods section). We found that
when we overexpressed KIF14 in HME1, cells were significantly
more resistant to docetaxel but not to doxorubicin (Figure 2, C
and D, and Figure W1, A and B), nor carboplatin or gemcitabine
(data not shown) (docetaxel LC50 for vector-control and pEGFP
KIF14 were 0.002 and 0.013 μM, respectively; P b .0001 by
analysis of covariance). Although KIF14 overexpression may lead to
increased proliferative capacity (Figure 1B), because viability assays
are performed within 3 days of drug administration, increased
proliferation rate alone (~10%) is unlikely to account for increased
docetaxel chemoresistance seen in KIF14-overexpressing HME1
cells. In addition, we decreased KIF14 expression by siRNA in
TNBC cell lines (MDA-MB-231, HCC38, and Htb126) and
found significant chemosensitization when cells were exposed to
docetaxel (Figure 2, E–G, and Figure W1, C–E).

Because AKT activation is antiapoptotic and is known to correlate
with chemoresistance [28,29], we evaluated the expression of pAKT in
various TNBC cell lines by immunoblot analysis (Figure 3A). We used
insulin stimulation to identify the cell lines that we could use to study the
temporal activation of AKT because most TNBC cell lines shown have
high basal expression of pAKT (Figure 3A). We found that
phosphorylation of AKT is a rapid event with significant phosphorylation
occurring in less than 30minutes inMDA-MB-231 cells (Figure 3B). To
evaluate the potential role of KIF14 in growth factor–inducible AKT
phosphorylation, we cotransfected pEGFP-KIF14 with pDsRed2-Akt1
in TNBC cells (Figure 3, C and D) and found that colocalization
(denoted by yellow signal) of KIF14 (green) and AKT1 (red) is most
prominent at the plasma membrane (Figure 3C) where phosphorylation
of AKT1 takes place by PI3 kinase [30]. We further performed
immunoprecipitation using total AKT antibody under nondenaturing
conditions and found that there is endogenous association of AKT with
KIF14 (Figure 3E).

Chemosensitization with KIF14 Knockdown is Associated with
Decreased pAKT

We previously observed that multiple TNBC cell lines with
KIF14 knockdown were significantly more sensitive to docetaxel
compared to control parental cell lines [4]. This suggests a
prosurvival advantage that KIF14 may confer on these cell lines
when under cytotoxic stress, consistent with our finding of
increased docetaxel resistance when KIF14 is overexpressed
(Figure 2C). The PI3K/Akt pathway is a well-known prosurvival
pathway in breast cancer with 57% of 507 sequenced breast tumors
in The Cancer Genome Atlas containing at least one mutation in
AKT1, phosphatase and tensin homolog, or phosphatidylinositol-4,5-
bisphosphate 3-kinase [31]. Because KIF14 is highly overexpressed
in TNBC [4], we tested if KIF14 expression confers a survival
advantage through activation of AKT. We chose MDA-MB-231
cells to study the effect of shKIF14 on PI3K/Akt pathway
activation because this cell line does not have any mutations in
phosphatidylinositol-4,5-bisphosphate 3-kinase, AKT1, or phospha-
tase and tensin homolog [32]. We examined a small panel of genes
involved in the PI3K/Akt signaling pathway [33-35] in MDA-MB-
231 cells with KIF14 knockdown using two distinct siRNAs and
re-expression (rescue) using pEGFP KIF14 and found that
decreased KIF14 correlates with decreased levels of phosphorylated
or activated AKT1 (at S473 and T308), phospho-glycogen synthase
kinase-3beta (S9), and pS6K (T389) along with decreased levels of
p62 and p21 (Figure 4A). However, expression of phospho-
Phosphoinositide-dependent kinase-1 (S241) remained the same
(Figure 4A) indicating that KIF14 expression correlates more with
activation of AKT, not PI3K. Although decreasedKIF14 expression was
associated with decreased pAKT, we also investigated if decreased
activation of AKT per se is responsible for chemosensitization with
KIF14 knockdown. We tested if activated AKT can rescue the
chemosensitization seen in siKIF14 cells and found that constitutively
active myristoylated Akt1 reverses docetaxel chemosensitivity seen in
siKIF14 cells as effectively as reconstituted KIF14 (LC50, in μM, are as
follows: si-control = 9.912e-3, siKIF1 = 1.846e-3, siKIF14+pEGFP
KIF14 = 6.851e-3, siKIF14 + myristoylated plasmid-Cytomegalovirus-
6 (pCMV6) Akt1 = 1.484e-2) (Figure 4B).
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Figure 5. Chemical inhibition of KIF14 results in decreased pAKT levels. (A) Chemical structure of KIF14i. (B) Relative viability of MDA-MB-
231, HCC38, and Htb126 cells when given indicated dosages of KIF14i for 72 hours. Data are from triplicates performed two independent
times. Error bars represent SEM. (C) Immunoblot analysis of MDA-MB-231 cells treated with indicated doses of KIF14i in the presence or
absence of docetaxel for 24 hours. Relative viability of MDA-MB-231 (D), HCC38 (E), or Htb126 (F) with si-control versus si-KIF14 (J-
003319-06; seeMaterials andMethods section) or when si-control cells are treated also with 5-μMKIF14i or 0.25-μMMK2206 when given
indicated dosages of docetaxel.
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KIF14 Chemical Inhibition is Associated with Decreased AKT
Activation and Chemosensitization

A putative KIF14i, (E)-2-(4-isopropyl-3-nitrobenzylidene)hydrazine-
carbothioamide, was identified in a screen for small molecules that
selectively inhibit the ATPase activity of KIF14 [20]. This molecule has
an inhibitory concentration at 50% for KIF14 ATPase activity in vitro of
54 nM [20]. We synthesized this compound (Figure 5A; see Materials
and Methods section) and showed that as a monotherapy, KIF14i
decreases viability ofMDA-MB-231,HCC38, andHtb126 cells (−LC50

= 11.14, 1.998, and 3.196μM, respectively; Figure 5B and FigureW1F).
KIF14i has a concentration-dependent effect on AKT phosphory-

lation and the amount of cleaved caspase 3 (as an indicator of apoptosis)
in MDA-MB-231 cells (Figure 5C). KIF14i has no activity against
AKT1 (see Materials and Methods section) and only minimal activity
against PI3K (p110α/p85α) (12% activity decrease at 1 μM and 27%
decrease at 10μM, respectively; seeMaterials andMethods section).We
also evaluated the effects of MK-2206 (an AKT inhibitor currently in
clinical trials for breast cancer) on TNBC cells in comparison with
KIF14i. MK2206 has single-agent activity (Figure W2) and is also
effective when given with chemotherapy [36]. We found that there is a
comparable degree of chemosensitization when 0.25-μMMK-2206 or
5-μM KIFi is given with docetaxel in MDA-MB-231, HCC38, and
Htb126 and that these chemical inhibitors mimic the effects of KIF14
knockdown by siRNA (Figure 5, D–F).

Discussion
There is an increasing number of genes found mutated in breast cancer
with unclear mechanistic underpinnings. We found KIF14 to be
significantly overexpressed in TNBC and that this expression correlated
with poor prognosis. Importantly, we determined that decreased KIF14
expression sensitized breast cancer cells to docetaxel [4]. We now
provide evidence that KIF14 may be a driver gene in carcinogenesis,
modulated through the PI3K/AKT pathway, and is a potential
therapeutic target for treatment of chemoresistant breast cancers.

KIF14 has been implicated in various studies as oncogenic, but its
relative significance as a driver gene in breast cancer pathogenesis
remained unclear [11–13,17]. In the present studies, we demonstrate
that increased KIF14 expression is sufficient to increase proliferative
capacity and increase anchorage-independent growth of noncancerous
mammary epithelial cells in vitro. BRCA1 or BRCA2 mutations are
associated with genetic instability and gross chromosomal abnormalities
[37–40]. We show that increased KIF14 expression can be seen in
benign, luminal breast tissue of high-risk BRCA mutation carriers
before overt cancer is detected and thus may be a novel biomarker for
high-risk breast tissue. It remains to be determined whether the
population of luminal cells that overexpress KIF14 correspond to the
expanded luminal progenitor population that may be preneoplastic in
BRCA mutation carriers [19]. Our finding of higher KIF14 expression
among luminal progenitors suggests that KIF14 may act as an oncogene
in luminal progenitors in BRCA carriers. This is important for future
studies where cancer progression can be studied in a FACS-isolatable
and increasingly well-defined subpopulation of breast epithelial cells
rather than a heterogeneous mix of cells from benign mammary gland.

Drug resistance, either intrinsic or acquired, is a major hurdle in
cancer treatment.KIF14 is a biomarker of chemotherapy resistance, and
the study ofmolecular pathways associatedwithKIF14 chemoresistance
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is important for further understanding its clinical implication in the
treatment of TNBC. KIF14 is a known microtubule-binding kinesin
motor. We have shown that KIF14 expression specifically affects
chemosensitivity to docetaxel, a microtubule-targeting agent. In
addition, the activation of the PI3K/AKT pathway initially occurs at
the plasma membrane where PI3K is localized. We show by live-cell
imaging that AKT movement toward the plasma membrane under
insulin stimulation is rapid and colocalizes with KIF14.Whether KIF14
interacts directly with AKT is undetermined although our findings
support that insulin-stimulated Akt1 phosphorylation may be coupled
to KIF14. An oncogenic role of KIF14 at the plasma membrane has
been suggested where KIF14 was found to negatively regulate Rap1a-
Radil signaling during breast cancer progression [17].
Multiple components of the PI3K/AKT pathway have been

implicated in chemotherapy resistance, and direct targeting of
PI3K, AKT1, and mammalian target of rapamycin is promising in
the treatment of breast cancer [29,41,42]. We show here that
Akt1 phosphorylation is affected by KIF14 knockdown, suggesting
a significant role for KIF14 in the activation of the PI3K/AKT
pathway in subsets of breast cancer. Because constitutively active
Akt1 (myristoylated Akt1) reverses chemosensitization of shKIF14
in MDA-MB-231 cells, activation of Akt1 appears to be a
potential molecular mechanism for chemoresistance seen with
KIF14 overexpression.
The complexity of cellular functions and regulations of Akt1 may

render it a challenging molecular target. In contrast, scaffolding
proteins such as molecular motors that tether signaling components
and help to localize signaling components in the cell may be potential
targets that can disrupt multiple aberrant cellular processes
simultaneously. Of note, small-molecule inhibitors of dynein,
another motor, have been described with potential utility in drug-
resistant forms of medulloblastoma and basal cell carcinoma [43].
Here, we demonstrate that chemical inhibition of KIF14 is feasible
and targeting KIF14 may increase chemosensitivity in TNBC. KIF14
is expressed at only low levels in normal human mammary epithelial
cells and postnatal tissues [11], suggesting that a specific KIF14
inhibitor may provide a high therapeutic index. We show here that
high KIF14 expression in primary tumors correlates with chemore-
sistance. The disease-associated up-regulation of KIF14 and its
apparent association with activation of AKT render it an attractive
therapeutic target.
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Figure W2. Relative viability of MDA-MB-231, HCC38, and Htb126
cells when given indicated dosages of MK2206 for 72 hours. Dose-
response curves were generated with data from CellTiter-Glo. Data
are from triplicates performed two independent times. Error bars
represent SEM.
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